Hoi,
Voorlopig laatste weer: x! = x^3 - x
Mijn redenering:
x! = x^3 - x = x(x^2- 1) = x(x + 1)(x - 1)
(x - 2)! = x + 1 —> Vanaf dit punt kwam ik “algebraïsch” niet veel verder, maar mij leek wel dat (x - 2)! veel sneller stijgt dan x + 1 en dat de faculteit een positief getal moet zijn (dus x ≥2), dus dat de oplossing voor x vrij klein en ≥2 moet zijn, dus met die “begrenzing” uitgekomen op x = 5, maar is hier een manier om het anders op te lossen? Met de Stirling-formule of zo?
Dank!