HansH schreef: ↑do 09 jan 2025, 08:29
ik weet niet wat de aanzet was voor start van dit topic, maar misschien is dit een mooie kans om systematisch de Rieman curvature en de wiskunde tools (tensors ?) eens gestructureerd te behandelen met uitgewerkte voorbeelden als aanzetje voor het beter begrijpen van de ART ? Er zijn vast mensen met voldoende kennis die dat kunnen begeleiden hier op het forum?
Eerste stap is dan het berekenen van de metriek op het oppervlak \(z = \sqrt{x^2 + y^2}\).
### 1. Parametrizeer het oppervlak
Het oppervlak kan worden beschreven door:
\[
\mathbf{r}(x, y) = (x, y, \sqrt{x^2 + y^2}),
\]
waar \(x\) en \(y\) de vrije parameters zijn.
### 2. Bereken de basisvectoren
De partiële afgeleiden van \(\mathbf{r}(x, y)\) zijn de tangentiële basisvectoren:
\[
\frac{\partial \mathbf{r}}{\partial x} = \left(1, 0, \frac{x}{\sqrt{x^2 + y^2}}\right), \quad
\frac{\partial \mathbf{r}}{\partial y} = \left(0, 1, \frac{y}{\sqrt{x^2 + y^2}}\right).
\]
### 3. Bereken de metrische tensor
De metrische tensor \(g_{ij}\) wordt berekend als het inproduct van de basisvectoren:
\[
g_{ij} = \frac{\partial \mathbf{r}}{\partial x^i} \cdot \frac{\partial \mathbf{r}}{\partial x^j}.
\]
De componenten zijn:
- \(g_{xx} = \frac{\partial \mathbf{r}}{\partial x} \cdot \frac{\partial \mathbf{r}}{\partial x}\),
- \(g_{xy} = \frac{\partial \mathbf{r}}{\partial x} \cdot \frac{\partial \mathbf{r}}{\partial y}\),
- \(g_{yy} = \frac{\partial \mathbf{r}}{\partial y} \cdot \frac{\partial \mathbf{r}}{\partial y}\).
### 4. Expliciete berekeningen
\[
g_{xx} = 1 + \frac{x^2}{x^2 + y^2}, \quad
g_{xy} = \frac{xy}{x^2 + y^2}, \quad
g_{yy} = 1 + \frac{y^2}{x^2 + y^2}.
\]
Na vereenvoudiging:
\[
g_{xx} = \frac{x^2 + y^2 + x^2}{x^2 + y^2} = 2, \quad
g_{xy} = \frac{xy}{x^2 + y^2}, \quad
g_{yy} = 2.
\]
### 5. Metriek in matrixvorm
De metrische tensor in termen van \(x\) en \(y\) is:
\[
g_{ij} = \begin{pmatrix}
2 & \frac{xy}{x^2 + y^2} \\
\frac{xy}{x^2 + y^2} & 2
\end{pmatrix}.
\]
Deze metriek is dan de basis voor het berkenen van de Christoffelsymbolen in een volgende stap...