Schrijf ter vereenvoudiging
\(x_n = \frac{\pi}{2^{n+1}}\)
Dan is
\(\lim_{n \rightarrow \infty} 4^n \left(2 -2\cos(\frac{\pi}{2^{n+1}})\right) = \lim_{n \rightarrow \infty} \frac{\pi^2}{4} \frac{2 -2\cos(x_n)}{x_{n}^2}\)
\( = \lim_{n \rightarrow \infty} \frac{\pi^2}{4} \frac{2 -2\cos(x_n)}{x_{n}^2}\frac{1 + \cos(x_n)}{2} =\)
\(\lim_{n \rightarrow \infty} \frac{\pi^2}{4} \left(\frac{\sin(x_n)}{x_{n}}\right)^2 = \frac{\pi^2}{4}\)