Substitutie van
\(x = e^{-t}\)
geeft
\(\int_0^1\frac{x^n-1}{\ln{x}}dx = \int_{0}^{\infty}\frac{e^{-t} - e^{-(n+1)t}}{t}dt\)
De integrand is begrensd op
\((0,\infty)\).
Bekijk nu voor x>0
\(F(x) = \int_{0}^{\infty}\frac{e^{-t} - e^{-xt}}{t}dt\)
Dan is
\(F'(x) = \int_{0}^{\infty}\frac{te^{-xt}}{t}dx = -\frac{e^{-xt}}{x} |_{0}^{\infty} = \frac{1}{x}\)
Dan is
\(F(x) = \ln(x) + C\)
Daar F(1) = 0 is C = 0 en
\(\int_0^1\frac{x^n-1}{\ln{x}}dx = \ln(n+1)\)