\(\left(\left(\frac{1}{x}\right)^{{\left(\frac{1}{x}\right)}^{\left(\frac{1}{x}\right)}}\right)^{2x} = x^{-1}\right^{\left( \frac{2}{x}\right)} = x^{-\frac{2}{x}} = e^{-\frac{2}{x}\ln(x)}\)
Afleiden\(e^{-\frac{2}{x}\ln(x)} \cdot \left( \frac{-2}{x^2} + \frac{2\ln(x)}{x^2} \right)\)