\(\sum_{n=1}^{\infty} \frac{n^{k-1}}{e^{2\pi n}-1} = \int_0^{\infty} \frac{x^{k-1}}{e^{2\pi x}-1}\ dx\)
\(\sum_{n=1}^{\infty} \frac{1}{n^n} = \int_0^{1} \frac{1}{x^x}\ dx\)
De eerste vergelijking geldt voor
\(k>2\mbox{, } k\mbox{ even}\)
Apropos, de eerste vergelijking is gelijk aan \(\frac{B_k}{2k}\)
waarbij \(B_k\)
het k-de Bernouilli getal is.