\(x^2+y^2=1 \)
\(4 \cdot \int_{0}^{1} \sqrt{1-x^2} dx\)
stel \( x=\sin {(t)} \)
\(4 \cdot \int_{0}^{1} \sqrt{\cos ^2{(t)}} \cdot \cos ({t}) dt = 4 \cdot \int_{0}^{1} \cos ^2({t}) dt \)
\(4 \cdot (\int_{0}^{1} \frac{1}{2}dt + \frac{1}{2} \cdot \int_{0}^{1} \cos ({2t})dt)\)
\( 2 + \frac{1}{4} \sin (2) \neq \pi\)
Waar ga ik de mist in