oktagon
Artikelen: 0
Berichten: 4.502
Lid geworden op: di 21 feb 2006, 12:28

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

Je kunt die plaat van jou beschouwen als een stijve ligger en wanneer die op twee stp.zou dragen,is de grootste doorbuiging in het midden.

Die grootste doorbuiging ga jij nu ondervangen door nog een steunpunt te maken en hierdoor ontstaat op de middelste balk de grootste belasting en ook het grootste moment in jouw plaat en wel aan de einden 0,00 ql2 ( dus geen buigend moment)en op het middenstp. - 1/8 ql2 =( 0,125 ql2).

Veldmoment van de plaat is + 9/128 ql2

De L moet je altijd rekenen van stp tot stp ,dus je plaat zelf heeft een lengte van 2 x L.

Succes!
philip85
Artikelen: 0
Berichten: 8
Lid geworden op: di 11 mar 2008, 10:35

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

Ik zit met een gelijkaardig probleem:

Een gewone balk op 3 steunpunten (A, B, C) met een verdeelde last op q (stel 100kN/m)

de balk is 2x15 m

Dit is dus een hyperstatisch ontwerp.

Ik kom aan de reactiekrachten via de fixed-end forces: R(A)=3/8xql R(B)=10/8xql R©=3/8xql

Heeft er iemand een correcte uitleg van waar deze krachten komen, dus de theoretische achtergrond hiervan.

Omdat dit een hyperstatisch model is kan ik de M en D niet bepalen met het inwendig evenwicht.

Moet dit dan met Cross? Hoe moest dit weer juist?

Ik heb alles ook ingegeven in ESA PT en kom het juiste uit maar ik zou ook graag de handberekening maken.

Mvg,

Philip
dirkwb
Artikelen: 0
Berichten: 4.246
Lid geworden op: wo 21 mar 2007, 20:11

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

philip85 schreef:Ik kom aan de reactiekrachten via de fixed-end forces: R(A)=3/8xql R(B)=10/8xql R©=3/8xql

Heeft er iemand een correcte uitleg van waar deze krachten komen, dus de theoretische achtergrond hiervan.
Dat is heel knap, de reactiekrachten tellen niet op tot nul.

Overigens moet je hiervoor een nieuw topic starten, zie de regels.
Quitters never win and winners never quit.
philip85
Artikelen: 0
Berichten: 8
Lid geworden op: di 11 mar 2008, 10:35

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

Overigens moet je hiervoor een nieuw topic starten, zie de regels.
Sorry, had ik geen erg op! zal ik een nieuw onderwerp starten of wordt dit verplaatst?
Dat is heel knap, de reactiekrachten tellen niet op tot nul.
Niet 0??

Last: 100 kN/m x 2 X 15 m = 3000 kN

Reactiekrachten: (2 x 3/8 x 100 x 15) + (10/8 x 100 x 15) = 3000 kN

Dus wel 0
dirkwb
Artikelen: 0
Berichten: 4.246
Lid geworden op: wo 21 mar 2007, 20:11

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

Sorry, had ik geen erg op! zal ik een nieuw onderwerp starten of wordt dit verplaatst?
Wordt verplaatst.
Niet 0??

Last: 100 kN/m x 2 X 15 m = 3000 kN

Reactiekrachten: (2 x 3/8 x 100 x 15) + (10/8 x 100 x 15) = 3000 kN

Dus wel 0
Ik vind het moeilijk dit soort dingen te zien zonder plaatje, is onderstaande wat je bedoelt?
3
3 932 keer bekeken
Quitters never win and winners never quit.
philip85
Artikelen: 0
Berichten: 8
Lid geworden op: di 11 mar 2008, 10:35

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

Neen, hoe voeg ik een figuur toe?

Het is eigenlijk heel simpel:

een gewone balk (vorm maakt niet uit) op 3 steunpunten (hyperstatisch, dus de balk bestaat uit 1 geheel).

2 maal een overspanning van l (neem 15 m).

Op deze balk ligt een verdeelde last q (neem 100 kN/m)
tekening
tekening 921 keer bekeken
dirkwb
Artikelen: 0
Berichten: 4.246
Lid geworden op: wo 21 mar 2007, 20:11

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

Gebruik:
\( \sum F_y = 0\)
en
\( \sum M =0\)
Quitters never win and winners never quit.
philip85
Artikelen: 0
Berichten: 8
Lid geworden op: di 11 mar 2008, 10:35

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

dirkwb schreef:Gebruik:
\( \sum F_y = 0\)
en
\( \sum M =0\)
Gaat niet, dit is hyperstatisch. 4 onbekenden en maar 3 vergelijkingen.
philip85
Artikelen: 0
Berichten: 8
Lid geworden op: di 11 mar 2008, 10:35

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

Voor het moment vind ik (uit tabellen):

M=q . L .((3/8) . X - (X² / (2 . L)))

Dit komt overeen met wat ik in de computerprogramma's vind maar ik zou graag weten hoe je aan deze formule komt. Of is er misschien een andere weg om aan het moment te raken?

Mvg,

Philip
Sjakko
Artikelen: 0
Berichten: 1.007
Lid geworden op: zo 25 mar 2007, 21:40

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

@philip85: gebruik standaardformuletjes (vergeet-me-nietjes) tezamen met superpositie, d.w.z.:

Denk eerst het middelste steunpunt weg en bereken de doorbuiging op dat punt (=het midden van de balk). Dat kan met een standaardformuletje, namelijk:
\(v_{max}=-\frac{5qL^4}{384EI}\)
Vervolgens plaats je op de plek van het steunpunt een puntlast en haal je de verdeelde belasting weg. Dan geldt:
\(v_{max}=-\frac{PL^3}{48EI}\)
Jouw probleem is niks anders dan de superpositie van deze twee standaardsituaties, waarbij de puntlast de doorbuiging door de verdeelde belasting weer terugduwt naar nul, ofwel:
\(-\frac{5qL^4}{384EI}-\frac{PL^3}{48EI}=0\)
ofwel:
\(P=-\frac{5}{8}qL\)
Nu kun je met krachtenevenwicht en momentenevenwicht de overige reactiekrachten bepalen.

Uit standaardformuletjes zou je dan ook het moment kunnen bepalen. Als je ook die standaardformuletjes verklaard wilt hebben, zoek dan eens op de Euler-Bernoulli beam equation, de differentiaalvergelijking voor balken.
dirkwb
Artikelen: 0
Berichten: 4.246
Lid geworden op: wo 21 mar 2007, 20:11

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

:D

Ik snap de situatie nu pas, excuses voor de verwarring philip85.

Sjakko's uitleg is mooi, in jouw geval is die L eigenlijk 2L dus geldt er:
\(R_B = \frac{-10}{8}qL\)
Quitters never win and winners never quit.
philip85
Artikelen: 0
Berichten: 8
Lid geworden op: di 11 mar 2008, 10:35

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

@ Sjakko: Bedankt voor de uitleg! Allemaal heel logisch, heb ik trouwens vroeger nog moeten leren...

toch nog een vraag: hoe moet ik juist het moment bepalen dat zal optreden boven het middelste steunpunt a.d.h.v. de vergeet-mij-nietjes? ik heb er achter gezocht maar ik kom niet uit op (1/8)ql².

mvg,

Philip
dirkwb
Artikelen: 0
Berichten: 4.246
Lid geworden op: wo 21 mar 2007, 20:11

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

1
1 911 keer bekeken

\( \left( \frac{qL}{2} \right) \cdot \frac{L}{2} - \frac{3}{8}qL \cdot L = \frac{1}{8}qL^2 \)
Quitters never win and winners never quit.
philip85
Artikelen: 0
Berichten: 8
Lid geworden op: di 11 mar 2008, 10:35

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

Ja, dit had ik ook gevonden maar dit is weeral een vereenvoudiging van de opgave door de balk in 2 te delen en een perfecte inklemming te veronderstellen in het midden.

Is er geen methode om aan ditzelfde moment te komen zoals Sjakko liet zien voor de reactiekrachten. Dus door middel van de doorbuiging, hoekverdraaiing ofzo?
dirkwb
Artikelen: 0
Berichten: 4.246
Lid geworden op: wo 21 mar 2007, 20:11

Re: Gelijkmatig verdeelde belasting over 3 dwarsbalken

philip85 schreef:Ja, dit had ik ook gevonden maar dit is weeral een vereenvoudiging van de opgave door de balk in 2 te delen en een perfecte inklemming te veronderstellen in het midden.

Is er geen methode om aan ditzelfde moment te komen zoals Sjakko liet zien voor de reactiekrachten. Dus door middel van de doorbuiging, hoekverdraaiing ofzo?
Goede vraag, ik weet niet zo snel een antwoord. Sjakko weet hier veel meer vanaf dan ik maar misschien helpt dit:
2
2 907 keer bekeken
Quitters never win and winners never quit.

Terug naar “Constructie- en sterkteleer”