jadatis schreef:[attachment=3288:bol.jpg]
Ik moet het met paint doen, maar heb geprobeerd de belangrijke lijnen aan te geven.
R is de straal van de bol en r is de straal van de cirkels op het oppervlak.
d is de afstand van het cirkelvlak-middelpunt tot het middelpunt van de bol
De 2 driehoekjes die de cirkel overbrugt, zitten er altijd 2 van in het platte vlak.
Dan zijn met pythagoras exact de juiste cirkelstralen te berekenen, en ook de exacte d te berekenen.
Je zou de zijden van het onderste driehoekig "yspegeltje"kunnen uitrekenen.
Je moet daarvoor wel eerst bepalen hoeveel je er op een cirkel zet.
Dan zou je van deze pegels een bol kunnen maken waarvan je op het boloppervlak alleen de gelijkzijdige driehoekjes ziet. in de bol sluiten dan de gelijkbenige driehoeken tegen elkaar met de 2 gelijkbenige zijden D ( Bolstraal) en de korte zijden aansluiten op de gelijkzijdige driehoek, die op het boloppervlak zichtbaar is , en waarvan de afmetingen afhankelijk zijn van uit hoeveel driehoekjes je de bol samenstelt.
Heb je in je nieuwe plaatje wel voor alle drie de donkerblauwe de zelfde gegevens gebruikt? Een vergissing is zo gemaakt.
Dus in het plaatje R, r, en d voor alle hetzelfde. mijn ruimtelijk inzicht doet vermoeden dat de cirkel die zo sterk er bovenuit komt mogelijk toch weer op de bol zit.
Kan ook zijn dat je de diameter van de 2 wel kruizende zo op maat gemaakt heb dat die wel kloppen.
Dan zouden ze niet elkaar op 1/6e van de cirkelomtrek kruizen.
6 driehoekjes per cirkel....
met paint kan je in ieder geval beter uit de voeten dan ik....
pythagoras bereken lukt me nog net..... dergelijke uitkomsten weet ik nog niet toe te passen in mijn software
hier even een kijkje in de keuken voor je...
een rotatie over 3 assen berekenen is me toch wel een heel ver van mijn bed show.....mocht het mogelijk zijn.....
want waarden kan ik rechts invullen wanneer ik ze zou weten.....
misschien lukt het je zo om het in mijn taal en mogelijkheden uit te leggen...
of wat tips te geven hoe ik te werk kan gaan.......de pivotpoint (centrum) van de cirkel zie je door de manipulatoren die het aangeeft, vierkantje met pijltjes...., de pivot point geeft me 3 opties, translate, rotate en scale....
(translate is verschuiven over X-Y en Z)
manier a en manier b
manier b heeft een iets grotere cirkel ivm het raken van de assen
ik maak een cirkel en die heeft een centrum punt (pivot point), (dit pivotpoint kan ik verplaatsen ergens binnenin de cirkel of naar waar dan ook in mijn ruimte, zou hem bv zo in het centrum van de bol kunnen plaatsen ipv in het centrum van de cirkel waar die nu staat, wanneer ik dat zou doen zou ik dus de cirkels om het centrum van de bol roteren)
deze cirkel kopieer en plak ik in het programma, dus zijn altijd identiek....mits ik ze net als bij manier b een beetje gescaled heb....
het programma kent zoals je gezien hebt, een boven, voor, zij aanzicht en een 3d compilatie
dus het is geen wiskundig programma waar in ik hoeken en lijnen kan uitrekenen of dat het programma dit soort dingen kan bijhouden of toepassen
alvast vele malen dank voor je tijd en moeite, het is zeer tof wanneer dit gaat lukken
want dan hebben we een 6e platonisch lichaam gevonden.....hoop doet leven, al is het maar voor even....
ga zelf ook eens snuffelen hoe ik die driehoekjes kan maken en dan pythagoras daarop weet toe te passen want dat klinkt toch wel heel logisch en mogelijk.....heb dat idee zelf nog niet bedacht of proberen toe te passen
al gaat logisch niet altijd op in dit verhaal ben ik al achter gekomen....
op hoop van zegen....hahaha.... bedankt wederom voor het mee uitvogelen....
mvg
rob