Gebruikersavatar
In physics I trust
Artikelen: 0
Berichten: 7.390
Lid geworden op: za 31 jan 2009, 08:09

[wiskunde] goniometrische functie van een cyclometrische functie

IK weet dat de sinus van de Bgtan gelijk is aan \(\frac{x}{\sqrt{1+x^2}}\), en weet eveneens wat de tangens van de sinus is. Nu vraag ik me af hoe je deze gelijkheid kan beredeneren. (Ik ken hem nu gewoon van buiten.)

Ik vraag me ook af hoe je de Bgtan, Bgcos etc. van de sinus, cosinus etc. berekent...

Kan iemand me aub een hint geven?
"C++ : Where friends have access to your private members." Gavin Russell Baker.
Gebruikersavatar
TD
Artikelen: 0
Berichten: 24.578
Lid geworden op: ma 09 aug 2004, 17:31

Re: [wiskunde] goniometrische functie van een cyclometrische functie

Ofwel beschouw je een gepaste rechthoekige driehoek, ofwel reken je wat met goniometrische identiteiten.

Bijvoorbeeld sin(bgtan(x)). Neem een rechthoekige driehoek met overstaande zijde x en aanliggende zijde 1, die heeft een tangens van x. Je wil de sinus van de hoek die daarbij hoort, maar in deze driehoek volgt dat de sinus gelijk is aan x gedeeld door de schuine zijde, en die volgt uit Pythagoras als sqrt(1+x²).
"Malgré moi, l'infini me tourmente." (Alfred de Musset)
Gebruikersavatar
Phys
Artikelen: 0
Berichten: 7.556
Lid geworden op: za 23 sep 2006, 19:43

Re: [wiskunde] goniometrische functie van een cyclometrische functie

Zie ook hier.
Never express yourself more clearly than you think.

- Niels Bohr -
Gebruikersavatar
In physics I trust
Artikelen: 0
Berichten: 7.390
Lid geworden op: za 31 jan 2009, 08:09

Re: [wiskunde] goniometrische functie van een cyclometrische functie

Bedankt, ik heb het nu begrepen!

Zo is de tan(Bgsin(x)) = x/sqrt(1-x²)

Bestaat er een soortgelijke redenering om bv. de Bgtan van de sinus te berekenen?

Alvast bedankt!

PS: ik heb een verkeerde topictitel genomen: het gaat over goniometrische functies van cyclometrische functies en andersom, niet om goniometrische functies van goniometrische functies...
"C++ : Where friends have access to your private members." Gavin Russell Baker.
Gebruikersavatar
TD
Artikelen: 0
Berichten: 24.578
Lid geworden op: ma 09 aug 2004, 17:31

Re: [wiskunde] goniometrische functie van een cyclometrische functie

PS: ik heb een verkeerde topictitel genomen: het gaat over goniometrische functies van cyclometrische functies en andersom, niet om goniometrische functies van goniometrische functies...
Blijkbaar al aangepast.

Je vraag herhalen is niet nodig, bumpen is niet toegelaten (bericht verwijderd).

In de andere richting heb je geen gelijkaardige formules.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

Terug naar “Huiswerk en Practica”