We werken nu Q nog uit.
Bericht #147 leerde ons dat:
\( \alpha= \arccos \left ( 1 \, - \, \frac{\frac{h}{R}}{ \frac{(R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1 } \right ) \)
.
In bericht #114 veronderstelden we al dat de hoek β tussen 0 en π/2 rad ligt. De hoek
\(\alpha\)
= β/2 ligt dan tussen 0 en π/4 rad. Zodat:
\( \cos \alpha= \cos \left [ \arccos \left ( 1 \, - \, \frac{\frac{h}{R}}{ \frac{(R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1 } \right ) \right ] \)
,
\( \cos \alpha = 1 \, - \, \frac{\frac{h}{R}}{ \frac{(R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1 } \)
,
\( \cos^2 \alpha = \left (1 \, - \, \frac{\frac{h}{R}}{ \frac{(R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1 } \right )^2 \)
,
\( 1 - \sin^2 \alpha = \left (1 \, - \, \frac{\frac{h}{R}}{ \frac{(R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1 } \right )^2 \)
,
\( \sin^2 \alpha \, - \, 1 = - \left (1 \, - \, \frac{\frac{h}{R}}{ \frac{(R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1 } \right )^2 \)
,
\( \sin^2 \alpha = 1 - \left (1 \, - \, \frac{\frac{h}{R}}{ \frac{(R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1 } \right )^2 \)
,
\( \sin \alpha = \sqrt{1 \, - \, \left ( 1 \, - \, \frac{\frac{h}{R}}{ \frac{(R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1 } \right )^2} \)
.
Bericht #139 leverde ons:
\( b = \frac{R + h}{ \sqrt{\frac{2 . (R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1}} } \)
.
(Waarin het duidelijk is dat b steeds ongelijk aan 0 is.)
Verder spraken we in bericht #173 af dat:
\( Q = \frac{R . \sin \alpha}{b} \)
.
Zodat we vinden:
\( Q = R \, . \, \frac{1}{b} \, . \, \sin \alpha \)
,
\( Q = R \, . \, \frac{ \sqrt{\frac{2 . (R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1}}{R + h} \, \, \, . \, \sqrt{1 \, - \, \left ( 1 \, - \, \frac{\frac{h}{R}}{ \frac{(R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1 } \right )^2} \)
,
\( Q = \frac{R}{R + h} \, . \, \sqrt{\frac{2 . (R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1} \, \, \, . \, \sqrt{1 \, - \, \left ( 1 \, - \, \frac{\frac{h}{R}}{ \frac{(R + h) \, \gamma M }{ R^4 \, \Omega^2 \cos^2 \varphi_B } \, - \, 1 } \right )^2} \)
,
\( Q = \frac{R}{R + h} \, . \, \sqrt{2 \, . \, \frac{R + h}{R} \, . \, \frac{ \gamma M }{ R^3 \, \Omega^2} \, . \, \frac{1}{ \cos^2 \varphi_B } \, - \, 1} \, \, \, . \, \sqrt{1 \, - \, \left ( 1 \, - \, \frac{\frac{R + h - R}{R}}{ \frac{R + h}{R} \, . \, \frac{ \gamma M }{ R^3 \, \Omega^2 } \, . \, \frac{1}{\cos^2 \varphi_B} \, - \, 1 } \right )^2} \)
,
\( Q = \frac{R}{R + h} \, . \, \sqrt{2 \, . \, \frac{ \gamma M }{ R^3 \, \Omega^2} \, . \, \frac{1}{ \cos^2 \varphi_B } \, . \, \frac{R + h}{R} \, - \, 1} \, \, \, . \, \sqrt{1 \, - \, \left ( 1 \, - \, \frac{\frac{R + h}{R} \, - \, \frac{R}{R}}{ \frac{ \gamma M }{ R^3 \, \Omega^2 } \, . \, \frac{1}{\cos^2 \varphi_B} \, . \, \frac{R + h}{R} \, - \, 1 } \right )^2} \)
,
\( Q = \frac{R}{R + h} \, . \, \sqrt{2 \, . \, \frac{ \gamma M }{ R^3 \, \Omega^2} \, . \, \frac{1}{ \cos^2 \varphi_B } \, . \, \frac{R + h}{R} \, - \, 1} \, \, \, . \, \sqrt{1 \, - \, \left ( 1 \, - \, \frac{\frac{R + h}{R} \, - \, 1}{ \frac{ \gamma M }{ R^3 \, \Omega^2 } \, . \, \frac{1}{\cos^2 \varphi_B} \, . \, \frac{R + h}{R} \, - \, 1 } \right )^2} \)
.
En in de berichten #166 en #171 spraken we af:
\( N_{\oplus} = \frac{\gamma M}{R^3 \, \Omega^2} \)
,
\( H = \frac{R + h}{R} \)
.
De formule voor Q kan daarom als volgt worden herschreven:
\( Q = \frac{1}{H} \, . \, \sqrt{2 \, . \, N_{\oplus} \, . \, \frac{1}{ \cos^2 \varphi_B } \, . \, H \, - \, 1} \, \, \, . \, \sqrt{1 \, - \, \left ( 1 \, - \, \frac{H \, - \, 1}{ N_{\oplus} \, . \, \frac{1}{\cos^2 \varphi_B} \, . \, H \, - \, 1 } \right )^2} \)
,
\( Q = \frac{1}{H} \, . \, \sqrt{ \frac{2 \, . \, N_{\oplus}}{ \cos^2 \varphi_B } \, . \, H \, - \, 1} \, \, \, . \, \sqrt{1 \, - \, \left ( 1 \, - \, \frac{H \, - \, 1}{ \frac{N_{\oplus}}{\cos^2 \varphi_B} \, . \, H \, - \, 1 } \right )^2} \)
.
In dit bericht hebben we daarmee gevonden:
\( Q = \frac{1}{H} \, . \, \sqrt{ \frac{2 \, . \, N_{\oplus}}{ \cos^2 \varphi_B } \, . \, H \, - \, 1} \, \, \, . \, \sqrt{1 \, - \, \left ( 1 \, - \, \frac{H \, - \, 1}{ \frac{N_{\oplus}}{\cos^2 \varphi_B} \, . \, H \, - \, 1 } \right )^2} \)
.