29.
Nu eerst een korte samenvatting. De onderstaande stellingen maken duidelijk hoe in grote lijnen de verhouding is tussen de formele en de metaformele getallen:
i. Alle metaformele getallen zijn verzamelingen van enkel formele getallen. Oftewel:
\( X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\, X \subset \mathfrak{F} \)
.
ii. Een metaformeel getal bevat altijd één of meer formele getallen. Oftewel:
\( X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\, (\exists A)[ A \in \mathfrak{F} \,\, \& \,\, A \in X \, ] \)
.
iii. Voor ieder metaformeel getal X is er minstens één formeel getal A zodat X = mw(A). Oftewel:
\( X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\, (\exists A)[ A \in \mathfrak{F} \,\, \& \,\, X = \mbox{mw}(A) \, ] \)
.
iv. Wanneer een formeel getal A een element is van een metaformeel getal X dan geldt: X = mw(A). Oftewel:
\( A \in X \,\,\, \& \,\,\, A \in \mathfrak{F} \,\,\, \& \,\,\, X \in \mathfrak{M} \,\,\,\, \Rightarrow \,\,\,\, X = \mbox{mw}(A) \)
.
v. Voor ieder formeel getal is er een metaformeel getal waar het een element van is. Oftewel:
\( A \in \mathfrak{F} \,\,\, \Rightarrow \,\,\, (\exists X)[ X \in \mathfrak{M} \,\, \& \,\, A \in X \, ] \)
.
vi. Geen enkel formeel getal is een element van meer dan één metaformeel getal. Oftewel:
\( \neg ( \exists A)[ \, A \in X \,\,\,\, \& \,\,\,\, A \in Y \,\,\,\, \& \,\,\,\, A \in \mathfrak{F} \,\,\,\, \& \,\,\,\, X \neq Y \,\,\,\, \& \,\,\,\, X \, \in \, \mathfrak{M} \,\,\,\, \& \,\,\,\, Y \in \mathfrak{M} \, ] \)
.
Bewijs:
We bewijzen achtereenvolgens i. t/m vi. :
i. Wegens definities 18g. en 19. geldt:
\( \mathfrak{M} \,\,\, = \,\, \{ X \in \mathcal{P}(\mathfrak{F}) \,\, | \,\, ( \exists A)[ \, A \in \mathfrak{F} \,\,\, \& \,\, X = [A]_{\heartsuit} \, \} \)
.
Dus:
\( X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\, X \in \mathcal{P}(\mathfrak{F}) \)
\( X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\, X \subset \mathfrak{F} \)
.
ii. Wegens definities 18g. en 19. geldt:
\( \mathfrak{M} \,\,\, = \,\, \{ X \in \mathcal{P}(\mathfrak{F}) \,\, | \,\, ( \exists A)[ \, A \in \mathfrak{F} \,\,\, \& \,\, X = [A]_{\heartsuit} \, \} \)
.
Dus:
\( X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\, (\exists A)[ \, A \in \mathfrak{F} \,\, \& \,\, X = [A]_{\heartsuit} \, ] \)
.
Op grond van stellingen 10. en 18b. vinden we dan:
\( X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\, (\exists A)[ \, A \in \mathfrak{F} \,\, \& \,\, A \, \in \, X \, ] \)
.
iii. Wegens definities 18g. en 19. geldt:
\( \mathfrak{M} \,\,\, = \,\, \{ X \in \mathcal{P}(\mathfrak{F}) \,\, | \,\, ( \exists A)[ \, A \in \mathfrak{F} \,\,\, \& \,\, X = [A]_{\heartsuit} \, \} \)
.
Dus:
\( X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\, (\exists A)[ \, A \in \mathfrak{F} \,\, \& \,\, X = [A]_{\heartsuit} \, ] \)
.
Op grond van definitie 26. vinden we dan:
\( X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\, (\exists A)[ \, A \in \mathfrak{F} \,\, \& \,\, X = \mbox{mw}(A) \, ] \)
.
iv. Wegens definities 18g. en 19. geldt:
\( \mathfrak{M} \,\,\, = \,\, \{ X \in \mathcal{P}(\mathfrak{F}) \,\, | \,\, ( \exists E)[ \, E \in \mathfrak{F} \,\,\, \& \,\, X = [E]_{\heartsuit} \, \} \)
.
Dus:
\( X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\, (\exists E)[ \, X = [E]_{\heartsuit} \, ] \)
.
Zodat:
\( A \in X \,\,\, \& \,\,\, A \in \mathfrak{F} \,\,\, \& \,\,\, X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\,\, (\exists E)[ \, A \in X \,\,\, \& \,\, X = [E]_{\heartsuit} \, ] \)
\( A \in X \,\,\, \& \,\,\, A \in \mathfrak{F} \,\,\, \& \,\,\, X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\,\, (\exists E)[ \, A \in [E]_{\heartsuit} \,\,\, \& \,\,\, X = \mbox{mw}(E) \, ] \)
(zie 26.)
\( A \in X \,\,\, \& \,\,\, A \in \mathfrak{F} \,\,\, \& \,\,\, X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\,\, (\exists E)[ \, A \, \heartsuit \, E \,\,\, \& \,\, X = \mbox{mw}(E) \, ] \)
(zie 18a.)
\( A \in X \,\,\, \& \,\,\, A \in \mathfrak{F} \,\,\, \& \,\,\, X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\,\, (\exists E)[ \, \mbox{mw}( A) \, = \, \mbox{mw}( E) \,\,\, \& \,\, X = \mbox{mw}(E) \, ] \)
(zie 27. regel ii.)
\( A \in X \,\,\, \& \,\,\, A \in \mathfrak{F} \,\,\, \& \,\,\, X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\,\, (\exists E)[ \, X = \mbox{mw}(A) \, ] \)
\( A \in X \,\,\, \& \,\,\, A \in \mathfrak{F} \,\,\, \& \,\,\, X \in \mathfrak{M} \,\,\, \Rightarrow \,\,\,\, X = \mbox{mw}( A) \)
.
v. Wegens stellingen 10. en 18b. geldt:
\( A \in \mathfrak{F} \,\,\, \Rightarrow \,\,\, A \in [ A ]_{\heartsuit} \)
.
Op basis van definities 18g. en 19. vinden we dan:
\( A \in \mathfrak{F} \,\,\, \Rightarrow \,\,\, (\exists X)[ X \in \mathfrak{M} \,\, \& \,\, A \in X \, ] \)
.
vi. Dit volgt direct uit definitie 18h. en stelling 27. regel vi. .