Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
stephanovich
Artikelen: 0
Berichten: 6
Lid geworden op: ma 17 okt 2011, 22:52

Problemen met faculteitsberekeningen

Hallo,

ik ben momenteel bezig met volledige inductie, sommaties en faculteiten

hierbij kreeg ik de volgende vraag:

bewijs met volledige inductie dat:
\(\sum_{k=1}^{n}(k*k!)\)
gelijk is aan (n+1)!-1

De eerste paar stappen gaan goed:

laat zien dat p(1) waar is

1*1!=2!*1 klopt

neem aan dat p(n) waar is, dus:
\(\sum_{k=1}^{n}(k*k!)\)
= (n+1)!-1

vervolgens aantonen dat p(n+1) waar is, en in de volgende uitwerkingen volgen voor mij de problemen
\(\sum_{k=1}^{n+1}(k*k!)\)
=
\(\sum_{k=1}^{n}(k*k!)\)
+(n+1)*(n+1)!

ik snap hierbij niet hoe ze aan die " (n+1)*(n+1)!" komen

en vervolgens werken ze het verder uit:

1:(n+1)!-1+(n+1)*(n+1)!

2:(n+2)(n+1)!-1

3:(n+2)!-1

4:((n+1)+1)!-1

ik snap hierbij niet hoe ze van de eerste naar de tweede vergelijking gaan.

zou iemand mij met deze 2 dingen kunnen helpen?

bij voorbaat dank.
Shadeh
Artikelen: 0
Berichten: 234
Lid geworden op: wo 28 jan 2009, 14:30

Re: Problemen met faculteitsberekeningen

\(\sum_{k=1}^{n+1}(k*k!) =\sum_{k=1}^{n}(k*k!)+(n+1)(n+1)!\)


(n+1)*(n+1)! is de n+1-de term van de sommatie.
Shadeh
Artikelen: 0
Berichten: 234
Lid geworden op: wo 28 jan 2009, 14:30

Re: Problemen met faculteitsberekeningen

Wat betreft het tweede, als je (n+1)(n+1)! nu eens schrijft als n(n+1)!+(n+1)! geraak je er dan?
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: Problemen met faculteitsberekeningen

stephanovich schreef:
\(\sum_{k=1}^{n}(k*k!)\)
gelijk is aan (n+1)!-1

vervolgens aantonen dat p(n+1) waar is, en in de volgende uitwerkingen volgen voor mij de problemen
\(\sum_{k=1}^{n+1}(k*k!)\)
=
\(\sum_{k=1}^{n}(k*k!)\)
+(n+1)*(n+1)!

ik snap hierbij niet hoe ze aan die " (n+1)*(n+1)!" komen
Hoeveel termen staan er links en hoeveel rechts?

Het is vaak nuttig een aantal termen uit te schrijven, bv de eerste drie en de laatste twee.

Ook is deze stap noodzakelijk want je moet de inductieveronderstelling kunnen gebruiken ...
stephanovich
Artikelen: 0
Berichten: 6
Lid geworden op: ma 17 okt 2011, 22:52

Re: Problemen met faculteitsberekeningen

links staan er n- termen aangezien het begint bij k=1 en eindigt bij n

waarbij de laatste term van p(n) volgens mij (n*n!) is

bij het volgende deel is de laatste term (n+1)*(n+1)! .... logisch dat ik dat niet eerder zag! dank u wel, dit is al een stuk duidelijker

alleen bij het tweede deel daagt er nog niet veel

ik weet dat (n+1)! hetzelfde is als n!(n+1) aangezien n!= 1*2*3*4....*(n-1)*n

en (n+1)= 1*2*3*4*....*(n-1)*n*(n+1)

dus krijg je volgens mij iets zoals:

n!(n+1)+(n+1)*n!(n+1)

maar toch is het me niet gelukt om

1:(n+1)!-1+(n+1)*(n+1)!

te schrijven als

2:(n+2)(n+1)!-1

te schrijven als

3:(n+2)!-1

ook lukt het me niet om uit te komen op de manier die shadeh me gaf
Gebruikersavatar
Drieske
Artikelen: 0
Berichten: 10.179
Lid geworden op: za 12 jul 2008, 17:07

Re: Problemen met faculteitsberekeningen

Ik vind het heel verwarrend wat je nu wel en niet snapt...
\(\sum_{k=1}^{n+1}(k*k!) = \sum_{k=1}^{n}(k*k!) + (n+1)(n+1)!\)
Dit snap je nu?

Dan hier:
1:(n+1)!-1+(n+1)*(n+1)!

2:(n+2)(n+1)!-1
Stel dat er zoiets stond: b - 1 + a b. Kon je dit dan anders (korter) schrijven?
Zoek je graag naar het meest interessante wetenschapsnieuws? Wij zoeken nog een vrijwilliger voor ons nieuwspostteam.
stephanovich
Artikelen: 0
Berichten: 6
Lid geworden op: ma 17 okt 2011, 22:52

Re: Problemen met faculteitsberekeningen

Ik snap hem nu helemaal!

de hele som is me nu duidelijk

dank jullie wel voor de geweldige hulp!
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: Problemen met faculteitsberekeningen

Kan je de opl nu eens netjes uitschrijven ...
stephanovich
Artikelen: 0
Berichten: 6
Lid geworden op: ma 17 okt 2011, 22:52

Re: Problemen met faculteitsberekeningen

Bewijs met volledige inductie:

laat zien dat
\(\sum_{k=1}^{n}(k*k!)\)
= (n+1)!-1

1:

laat zien dat p(1) waar is

1*1!=2!*1 klopt

2:

neem aan dat p(n) waar is, dus:
\(\sum_{k=1}^{n}(k*k!)\)
= (n+1)!-1

3:

vervolgens aantonen dat p(n+1) waar is,
\(\sum_{k=1}^{n+1}(k*k!)\)
vul in plaats van k nu (n+1) in en je krijgt:

(n+1)(n+1)!

dus
\(\sum_{k=1}^{n}(k*k!)\)
+(n+1)*(n+1)!

vervolgens gebruik je dat p(n) waar is, dus:

1* : (n+1)!-1+(n+1)*(n+1)!

2* : (n+2)(n+1)!-1

3* : (n+2)!-1

4* : ((n+1)+1)!-1

1*: Gebruik maken van de aanname dat p(n) waar is

2*: Stel (n+1)!-1+(n+1)*(n+1)! = a-1+ba, dan is dat hetzelfde als: a(1+b)-1.

dus (n+1)!((1+(n+1))-1

en dat is hetzelfde als (n+1)!(n+2)-1

dan simpelweg omdraaien: (n+2)(n+1)!-1

3*: maak gebruik van het feit dat (n+2)!= 1*2*3*4*.....*n*(n+1)*(n+2)

dus (n+2)(n+1)!= (n+2)!

dus zo kom je aan (n+2)!-1

4*: (n+2)!-1= ((n+1)+1)-1

hopelijk is dit de juiste uitleg nu. Nogmaals bedankt.
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: Problemen met faculteitsberekeningen

stephanovich schreef:Bewijs met volledige inductie:

laat zien dat
\(\sum_{k=1}^{n}(k*k!)= (n+1)!-1\)
1:

laat zien dat p(1) waar is

1*1!=2!*1 klopt

2:

neem aan dat p(n) waar is, dus inductieveronderstelling
\(\sum_{k=1}^{n}(k*k!)\)
= (n+1)!-1

3:

vervolgens aantonen dat p(n+1) waar is, dus
\(\sum_{k=1}^{n+1}(k*k!)=(n+2)!-1\)
vul in plaats van k nu (n+1) in en je krijgt:

(n+1)(n+1)!

dus

Maak gebruik van de inductieveronderstelling
\(\sum_{k=1}^{n}(k*k!)+(n+1)\cdot(n+1)!=(n+1)!-1+(n+1)\cdot(n+1)!==(n+1)!+(n+1)\cdot(n+1)!\; -1=(n+1)!(1+n+1)\; -1=(n+1)!(n+2)\; -1==(n+2)!\; -1\)
w.t.b.w

vervolgens gebruik je dat p(n) waar is, dus:

1* : (n+1)!-1+(n+1)*(n+1)!

2* : (n+2)(n+1)!-1

3* : (n+2)!-1

4* : ((n+1)+1)!-1

1*: Gebruik maken van de aanname dat p(n) waar is

2*: Stel (n+1)!-1+(n+1)*(n+1)! = a-1+ba, dan is dat hetzelfde als: a(1+b)-1.

dus (n+1)!((1+(n+1))-1

en dat is hetzelfde als (n+1)!(n+2)-1

dan simpelweg omdraaien: (n+2)(n+1)!-1

3*: maak gebruik van het feit dat (n+2)!= 1*2*3*4*.....*n*(n+1)*(n+2)

dus (n+2)(n+1)!= (n+2)!

dus zo kom je aan (n+2)!-1

4*: (n+2)!-1= ((n+1)+1)-1

hopelijk is dit de juiste uitleg nu. Nogmaals bedankt.
Het ziet er heel goed uit. Een paar puntjes: ik vul dat hierboven in

Ik begrijp niet goed waarop je het volgende schrijft:
en dat is hetzelfde als (n+1)!(n+2)-1

dan simpelweg omdraaien: (n+2)(n+1)!-1
Immers (bv) 8!=7!*8, dus (n+1)!*(n+2)=(n+2)!
stephanovich
Artikelen: 0
Berichten: 6
Lid geworden op: ma 17 okt 2011, 22:52

Re: Problemen met faculteitsberekeningen

Safe schreef:Het ziet er heel goed uit. Een paar puntjes: ik vul dat hierboven in

Ik begrijp niet goed waarop je het volgende schrijft:

Immers (bv) 8!=7!*8, dus (n+1)!*(n+2)=(n+2)!
sorry dat ik het woord inductieveronderstelling vergat, aangezien mijn colleges geheel in het Engels zijn wist ik de term in het Nederlands niet meer.

jou voorbeeld is ook goed, ik rangschik het alleen net iets anders

in mijn voorbeeld zet ik het liever zo:

oorspronkelijk: 7!*8

Ik schrijf dat voor mezelf liever zo op : 8!*7 = 8!

dus (n+1)!*(n+2)= (n+2)(n+1)! = (n+2)!
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: Problemen met faculteitsberekeningen

oorspronkelijk: 7!*8

Ik schrijf dat voor mezelf liever zo op : 8!*7 = 8!

dus (n+1)!*(n+2)= (n+2)(n+1)! = (n+2)!
Echt belangrijk is dit niet.

Maar 8!*7 = 8! is wel fout.

En ik ben gewend om 1*2*3*4*5*6*7*8=8! maar ook als 1*2*3*4*5*6*7 *8=7!*8 te schrijven als dat nodig is ...

8 is de opvolgende factor van 7!
stephanovich
Artikelen: 0
Berichten: 6
Lid geworden op: ma 17 okt 2011, 22:52

Re: Problemen met faculteitsberekeningen

Safe schreef:Echt belangrijk is dit niet.

Maar 8!*7 = 8! is wel fout.

En ik ben gewend om 1*2*3*4*5*6*7*8=8! maar ook als 1*2*3*4*5*6*7 *8=7!*8 te schrijven als dat nodig is ...

8 is de opvolgende factor van 7!
mijn fout inderdaad

ik bedoelde:

7!*8

naar :

8*7!

Maar dat had ik gewoon even over het hoofd gezien.

Terug naar “Wiskunde”