Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
Katherine Schermerhorn
Artikelen: 0
Berichten: 1
Lid geworden op: do 11 okt 2012, 16:51

andere afgeleide sinus

Ik heb per ongeluk misschien een andere manier gevonden om uit te rekenen wanneer de afgeleide van een sinusfunctie gelijk is aan 0.

y=a+bsin(cx-d)

y=y

a+bsin(cx-d)=a+bsin(cx-d)

sin(cx-d)=sin(cx-d)

cx-d=cx-d+k2π V cx-d=π-cx+d+k2π

geldt voor elke x V 2cx=π+2d+k2π

x=π/2c+2d/2c+k2π/2c

y'=bc*cos(cx-d)

y'=0

bc*cos(cx-d)=0

cos(cx-d)=cos(π/2)

cx-d=π/2+k2π V cx-d=-π/2+k2π

cx=π/2+d+k2π V cx=-π/2+d+k2π

x=π/2c+2d/2c+k2π/c V x=-π/2c+2d/2c+k2π/c

Deze twee formules kunnen worden samengevoegd tot x=π/2c+2d/2c+k2π/2c

Dit antwoord komt overeen met wat ik heb gevonden door y=y.

Ik weet alleen niet zeker of het klopt en als hetklopt waarom ik op hetzelfde antwoord uit kom. Ik heb dit nog niet op handere repeteerende functies uitgeprobeerd.
Gebruikersavatar
In physics I trust
Artikelen: 0
Berichten: 7.390
Lid geworden op: za 31 jan 2009, 08:09

Re: andere afgeleide sinus

Ik weet niet juist wat je punt nu is. Je hebt de algemene vorm van de sinus-functie opgeschreven, en deze algemene vorm afgeleid. Deze stel je dan gelijk aan 0.

Dat is de methode die je steeds toepast als daarnaar wordt gepeild, dus wat daar anders aan zou zijn ontgaat me. Bovendien is de volgende overgang een beetje raar (ik zie niet wat je daarmee wil).

bc*cos(cx-d)=0

cos(cx-d)=cos(π/2)

Eigenlijk heb je gewoon dat de afgeleide van een sinus een cosinus is en vice versa. Een cosinus kan je herschrijven als een sinus (maar dan verschoven) dus de nulpunten verschuiven eenvoudig mee.
"C++ : Where friends have access to your private members." Gavin Russell Baker.
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: andere afgeleide sinus

In physics I trust schreef: do 11 okt 2012, 21:11
Bovendien is de volgende overgang een beetje raar (ik zie niet wat je daarmee wil).

bc*cos(cx-d)=0

cos(cx-d)=cos(π/2)
Dit is volkomen correct ...

Terug naar “Wiskunde”