Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
elbartje
Artikelen: 0
Berichten: 144
Lid geworden op: wo 28 mar 2012, 19:38

Hulp bij integraal

Ik zit vast met de volgende integraal:
\( \int \frac{e^{2t}}{ch(t)} dt \)
Kan ik de argch vervangen door iets wat ik kan afleiden zodat ik partiële integratie kan toepassen ?

Of moet dit nog op een andere manier?

Alvast bedankt
Gebruikersavatar
Siron
Artikelen: 0
Berichten: 1.069
Lid geworden op: di 02 feb 2010, 20:16

Re: Hulp bij integraal

Je spreekt over 'argch' (inverse hypberbolische cosinus), maar volgens mij bedoelen ze in de integraal gewoon de hyperbolische cosinus. De integraal die je moet berekenen is
\(\int \frac{e^{2t}}{\cosh(t)}dt\)
en bovendien geldt
\(\cosh(t) = \frac{e^{t}+e^{-t}}{2}\)
.

Geraak je hier mee verder?
elbartje
Artikelen: 0
Berichten: 144
Lid geworden op: wo 28 mar 2012, 19:38

Re: Hulp bij integraal

Nu ben ik even niet mee,

1/ch(x) = ch(x)^-1 = archch = coch Is dit niet allemaal dezelfde naam voor de inverse cosinus hyperbolicus ?

Of ben ik hier mis

Jij geeft een formule van de inverse sinus hyperbolicus, deze is toch niet van toepassing.
Gebruikersavatar
Typhoner
Artikelen: 0
Berichten: 2.456
Lid geworden op: zo 20 feb 2011, 21:33

Re: Hulp bij integraal

elbartje schreef: do 01 nov 2012, 17:44
1/ch(x) = ch(x)^-1 = archch = coch Is dit niet allemaal dezelfde naam voor de inverse cosinus hyperbolicus ?

Of ben ik hier mis
Je maakt de fout dat je zegt dat
\((\cosh x)^{-1} = \cosh^{-1} x\)
het linkerlid is wat in de opgave staat, en het rechterlid de inverse functie (wat jij er van maakt).

Ter vergelijking
\((\cos x)^{-1} \neq \cos^{-1} x = \textrm{acosh} \, x\)
Jij maakt de fout dat je "de inverse van iets met een cosh in" verwart met "de inverse van de cosh-functie"
This is weird as hell. I approve.
Gebruikersavatar
tempelier
Artikelen: 0
Berichten: 4.388
Lid geworden op: zo 08 jan 2012, 00:59

Re: Hulp bij integraal

Typhoner schreef: do 01 nov 2012, 18:39
Je maakt de fout dat je zegt dat
\((\cosh x)^{-1} = \cosh^{-1} x\)
het linkerlid is wat in de opgave staat, en het rechterlid de inverse functie (wat jij er van maakt).

Ter vergelijking
\((\cos x)^{-1} \neq \cos^{-1} x = \acos x\)
Jij maakt de fout dat je "de inverse van iets met een cosh in" verwart met "de inverse van de cosh-functie"
Je hanteert hier wel de Amerikaanse notatie, die zeker niet algemeen is geaccepteerd.
In de wiskunde zijn er geen Koninklijke wegen Majesteit.
Gebruikersavatar
Typhoner
Artikelen: 0
Berichten: 2.456
Lid geworden op: zo 20 feb 2011, 21:33

Re: Hulp bij integraal

tempelier schreef: do 01 nov 2012, 18:51
Je hanteert hier wel de Amerikaanse notatie, die zeker niet algemeen is geaccepteerd.


bedoel je "cosh"? Daarvan was ik zeker dat het in LateX ingebakken zit ;)
This is weird as hell. I approve.
Gebruikersavatar
tempelier
Artikelen: 0
Berichten: 4.388
Lid geworden op: zo 08 jan 2012, 00:59

Re: Hulp bij integraal

Typhoner schreef: do 01 nov 2012, 18:55
bedoel je "cosh"? Daarvan was ik zeker dat het in LateX ingebakken zit ;)
Nee dat bedoel ik niet.

de amerikanen en helaas ook steeds meer mensen hier noteren:
\( \sin^{-1} x = \arcsin x \)
hetgeen inconsistent is met:
\( \sin^n x = (\sin x)^n \)
In de wiskunde zijn er geen Koninklijke wegen Majesteit.
Gebruikersavatar
Typhoner
Artikelen: 0
Berichten: 2.456
Lid geworden op: zo 20 feb 2011, 21:33

Re: Hulp bij integraal

Mja, maar ik vermoed dat hier ook het probleem van de TS zit. Vandaar dat ik er mijn post op wees dat je ermee moet oppassen.
This is weird as hell. I approve.
Gebruikersavatar
tempelier
Artikelen: 0
Berichten: 4.388
Lid geworden op: zo 08 jan 2012, 00:59

Re: Hulp bij integraal

Typhoner schreef: do 01 nov 2012, 19:11
Mja, maar ik vermoed dat hier ook het probleem van de TS zit. Vandaar dat ik er mijn post op wees dat je ermee moet oppassen.
Daar heb je gelijk in, het is altijd raadzaam om eerst te kijken wat er in een boek/cursus.... met een uitdrukking bedoeld wordt, want helaas is zelfs de wiskunde niet altijd eenduidig in de notaties.
In de wiskunde zijn er geen Koninklijke wegen Majesteit.
elbartje
Artikelen: 0
Berichten: 144
Lid geworden op: wo 28 mar 2012, 19:38

Re: Hulp bij integraal

Even ter verheldering klopt dit dan wat ik als volgt zeg:
\(Argsin(x)=Bsin(x) = sin^{-1}(x) \)
\(cosec(x) = \frac{1}^sin (x)} = (sin (x))^{-1} \)
(Die waarbij een macht wordt gebruikt is dan de Amerikaanse manier ?)
Gebruikersavatar
mathfreak
Pluimdrager
Artikelen: 0
Berichten: 3.505
Lid geworden op: zo 28 dec 2008, 16:22

Re: Hulp bij integraal

Argsin moet arcsin zijn. Het is in de Angelsaksische literatuur inderdaad gebruikelijk om dit als sin-1 te noteren, net zoals arccos wordt weergegeven als cos-1 en arctan als tan-1. Op rekenmachines kom je deze notatie ook tegen. Ik interpreteer jouw notatie ch als de verkorte schrijfwijze van cosh, dus de cosinushyperbolicus, gedefinieerd als cosh x = ½(ex+e-x). Als mijn interpretatie klopt zou je de desbetreffende integraal met behulp van de substitutiemethode kunnen berekenen.
"Mathematics is a gigantic intellectual construction, very difficult, if not impossible, to view in its entirety." Armand Borel
elbartje
Artikelen: 0
Berichten: 144
Lid geworden op: wo 28 mar 2012, 19:38

Re: Hulp bij integraal

Dan krijgen we de volgende integraal:
\( \int \frac{2e^{2t}}{e^x+e^{-x}}dt \)
Nu zou ik dit moeten kunnen herschrijven naar
\( 2 \int \frac{e^{3t}}{e^{2t}+1} dt \)
Ik zie niet waarom deze laatste stap mag.

Dan kan ik weer verder :)
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: Hulp bij integraal

elbartje schreef: di 06 nov 2012, 11:23
Dan krijgen we de volgende integraal:
\( \int \frac{2e^{2t}}{e^x+e^{-x}}dt \)
Nu zou ik dit moeten kunnen herschrijven naar
\( 2 \int \frac{e^{3t}}{e^{2t}+1} dt \)
Ik zie niet waarom deze laatste stap mag.
\( \int \frac{2e^{2t}}{e^t+e^{-t}}dt \)
\( 2 \int \frac{e^{3t}}{e^{2t}+1} dt \)
Verm t en n met e^t

Ik ben benieuwd naar je volgende stap ...
Gebruikersavatar
dannypje
Artikelen: 0
Berichten: 768
Lid geworden op: zo 27 mei 2012, 20:30

Re: Hulp bij integraal

verwarrend hoor, dat gebruik van t en x door mekaar.
In the beginning, there was nothing. Then he said:"Light". There was still nothing but you could see it a whole lot better now.
elbartje
Artikelen: 0
Berichten: 144
Lid geworden op: wo 28 mar 2012, 19:38

Re: Hulp bij integraal

Sorry voor de verwarring, x vervangen door t zoals Safe zegt.

natuurlijk vermenigvuldigen met e^(t),

e^(t) * e^(-t) = 1 (hier zat ik fout)

Zo doe ik nu verder:

Nu kan ik substitutie toepassen:
\( e^{t} =u \)
dus
\( e^{t} dt =du \)
tussenstap:
\( \int{ \frac{ e^{3t}}{u²+1} * \frac{du}{e^{t}}} \)
\( \int{ \frac{ u²}{u²+1} du} \)
\( \int{ \frac{ u²+1-1}{u²+1} du} \)
\( \int{ \frac{ u²+1}{u²+1}du - \int \frac{1}{u²+1} du} \)
Deze integralen kunnen we dan oplossen.

Bedankt iedereen! :)

Terug naar “Wiskunde”