Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
Gebruikersavatar
Redfield
Artikelen: 0
Berichten: 98
Lid geworden op: wo 26 sep 2012, 07:42

Wiskunde en de verbanden?

In de vorige periode moesten wij leren wat een kwadratische vergelijking was. We moesten o.a. leren:

Factoren ontbinden

A X B = 0

Ontbinden van drietermen

kwadratische vergelijkingen

ABC-formule

Voor mij zijn dat allemaal tools om: ax2+bx+c=0 op te lossen.

Wij gaan nu verder met wortels en machtsfuncties. Ook gaan we nu differentiëren behandelen.

Wat mijn vraag is: is dit nog steeds verbonden met de tweedegraadsvergelijking?



Ook zijn er limieten asympototen e.d. is dat allemaal verbonden met de tweedegraadsvergelijking?

Hoe vind ik een beetje de structuur hierin?
Gebruikersavatar
dannypje
Artikelen: 0
Berichten: 768
Lid geworden op: zo 27 mei 2012, 20:30

Re: Wiskunde en de verbanden?

je zou kunnen zeggen dat wortels gerelateerd zijn aan tweedegraadsvergelijkingen omdat een worteltrekking de inverse functie is van een kwadraat natuurlijk. Maar dat is volgens mij zowat het enige.

Machtsfuncties zijn denk ik functies met x als exponent, bvb. y=a^x en dat heeft niet echt veel met tweedegraadsvergelijkingen te maken denk ik.

Afgeleiden (differentieren) staan ook op zich, en kunnen op (bijna) elke soort functie toegepast worden.

Limieten zijn dan weer verbonden met afgeleiden (de definitie van een afgeleide gebruikt limieten), en asymptoten bereken je ook met limieten, maar die zijn ook niet meer verbonden met tweedegraadsvergelijkingen.
In the beginning, there was nothing. Then he said:"Light". There was still nothing but you could see it a whole lot better now.
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: Wiskunde en de verbanden?

Redfield schreef: zo 18 nov 2012, 20:46
Wij gaan nu verder met wortels en machtsfuncties. Ook gaan we nu differentiëren behandelen.

Wat mijn vraag is: is dit nog steeds verbonden met de tweedegraadsvergelijking?

Ook zijn er limieten asympototen e.d. is dat allemaal verbonden met de tweedegraadsvergelijking?

Hoe vind ik een beetje de structuur hierin?
Nee dus, je gaat functies bekijken. Daarbij kunnen verg aan de orde komen (nulptn bepalen, het is ook mogelijk dat de kwadr verg weer voorkomt).

Differentiëren is de techniek om meer te weten te komen over een functie (min/max). Limieten zijn verbonden aan differentiëren.

Hoofdzaak is: kennismaken met allerlei functies.

Terug naar “Wiskunde”