OK - de integraal. Formule 7 luidt:
\( \phi \, = \, \int_0^{\tau} \, \omega(t) \, \mbox{d}t \)
.
En formule 4:
\( \omega(t) \, = \, \left (\frac{1}{ 1 - u(t)^2 } \right )^2 . \,\, \Omega \)
.
Invullen geeft:
\( \phi \, = \, \int_0^{\tau} \, \left (\frac{1}{ 1 - u(t)^2 } \right )^2 . \,\, \Omega \,\,\, \mbox{d}t \)
\( \phi \, = \, \Omega \, . \, \int_0^{\tau} \, \left (\frac{1}{ 1 - u(t)^2 } \right )^2 \, \mbox{d}t \)
\( \phi \, = \, \Omega \, . \, \int_0^{\tau} \, \left (\frac{1}{ 1 - u(t)^2 } \right )^2 \, . \, \frac{\sqrt{\frac{\mbox{g}}{2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } }}{\sqrt{\frac{\mbox{g}}{2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } }} \,\,\,\, \mbox{d}t \)
\( \phi \, = \, \frac{\Omega}{\sqrt{\frac{\mbox{g}}{2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } } } \, . \, \int_0^{\tau} \, \left (\frac{1}{ 1 - u(t)^2 } \right )^2 \, . \, \sqrt{\frac{\mbox{g}}{2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } } \,\,\,\, \mbox{d}t \)
\( \phi \, = \, \Omega \,\, . \,\, \sqrt{ \frac{ 2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } { \mbox{g} } } . \int_0^{\tau} \, \left (\frac{1}{ 1 - u(t)^2 } \right )^2 \, . \, \sqrt{\frac{\mbox{g}}{2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } } \,\,\,\, \mbox{d}t \)
.
Op basis van formule 3 vinden we dan ook:
\( \phi \, = \, \Omega \,\, . \,\, \sqrt{ \frac{ 2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } { \mbox{g} } } . \int_0^{\tau} \, \left (\frac{1}{ 1 - u(t)^2 } \right )^2 \, . \, \frac{\mbox{d} u}{\mbox{d} t} \,\,\,\, \mbox{d}t \)
\( \phi \, = \, \Omega \,\, . \,\, \sqrt{ \frac{ 2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } { \mbox{g} } } . \int_{u(0)}^{u(\tau)} \, \left (\frac{1}{ 1 - u^2 } \right )^2 \,\,\, \mbox{d}u \)
.
En dus wegens formule 5 vervolgens:
\( \phi \, = \, \Omega \,\, . \,\, \sqrt{ \frac{ 2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } { \mbox{g} } } . \int_0^{u(\tau)} \, \left (\frac{1}{ 1 - u^2 } \right )^2 \,\,\, \mbox{d}u \)
.
Voor deze integraal heb ik WolframAlpha geraadpleegd:
http://www.wolframal...E2%29%29%5E2+dx
We krijgen dan:
\( \phi \, = \, \Omega \,\, . \,\, \sqrt{ \frac{ 2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } { \mbox{g} } } . \left [ {\scriptstyle \frac{1}{4} } \, . \, \left ( \frac{2 u }{1 - u^2} - \ln(1 - u) + \ln(1 + u ) \right ) \right ]_0^{u(\tau)} \)
\( \phi \, = \, \Omega \,\, . \,\, \sqrt{ \frac{ 2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } { \mbox{g} } } . \left \{ {\scriptstyle \frac{1}{4} } \, . \, \left ( \frac{2 u(\tau) }{1 - u(\tau)^2} - \ln(1 - u(\tau)) + \ln(1 + u(\tau) ) \right ) \,\,\, - \,\,\, {\scriptstyle \frac{1}{4} } \, . \, \left ( \frac{0}{1} - \ln(1) + \ln(1) \right ) \right \}\)
\( \phi \, = \, \Omega \,\, . \,\, \sqrt{ \frac{ 2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } { \mbox{g} } } . {\scriptstyle \frac{1}{4} } \, . \, \left ( \frac{2 u(\tau) }{1 - u(\tau)^2} - \ln(1 - u(\tau)) + \ln(1 + u(\tau) ) \right ) \)
\( \phi \, = \, \frac{\Omega}{4} \,\, . \,\, \sqrt{ \frac{ 2 \left ( \mbox{R} + \mbox{h}_{toren} \right ) } { \mbox{g} } } . \, \left ( \frac{2 u(\tau) }{1 - u(\tau)^2} - \ln(1 - u(\tau)) + \ln(1 + u(\tau) ) \right ) \)
(formule 9) .