\( \mbox{I}(x) = \frac{2 x }{1 - x^2} - \ln(1 - x) + \ln(1 + x )\)
(formule 11) .Dus:
\( \mbox{I} \left (\sqrt{ \frac{ x }{ 1 + x }} } \, \right ) = \frac{2 \sqrt{ \frac{ x }{ 1 + x } } }{1 - \left ( \sqrt{ \frac{ x }{ 1 + x }} } \right )^2} - \ln \left (1 - \sqrt{ \frac{ x }{ 1 + x }} } \, \right ) + \ln \left (1 + \sqrt{ \frac{ x }{ 1 + x }} } \, \right )\)
\( \mbox{I} \left (\sqrt{ \frac{ x }{ 1 + x }} } \, \right ) = \frac{2 \sqrt{ \frac{ x }{ 1 + x } } }{1 - \frac{ x }{ 1 + x }} }} - \ln \left (1 - \sqrt{ \frac{ x }{ 1 + x }} } \, \right ) + \ln \left (1 + \sqrt{ \frac{ x }{ 1 + x }} } \, \right )\)
\( \mbox{I} \left (\sqrt{ \frac{ x }{ 1 + x }} } \, \right ) = \frac{2 \sqrt{ \frac{ x }{ 1 + x } } }{\frac{ 1 + x }{ 1 + x } - \frac{ x }{ 1 + x }} }} - \ln \left (1 - \sqrt{ \frac{ x }{ 1 + x }} } \, \right ) + \ln \left (1 + \sqrt{ \frac{ x }{ 1 + x }} } \, \right )\)
\( \mbox{I} \left (\sqrt{ \frac{ x }{ 1 + x }} } \, \right ) = \frac{2 \sqrt{ \frac{ x }{ 1 + x } } }{ \frac{ 1 }{ 1 + x }} }} - \ln \left (1 - \sqrt{ \frac{ x }{ 1 + x }} } \, \right ) + \ln \left (1 + \sqrt{ \frac{ x }{ 1 + x }} } \, \right )\)
\( \mbox{I} \left (\sqrt{ \frac{ x }{ 1 + x }} } \, \right ) = 2 \, (1 + x) \, \sqrt{ \frac{ x }{ 1 + x } } - \ln \left (1 - \sqrt{ \frac{ x }{ 1 + x }} } \, \right ) + \ln \left (1 + \sqrt{ \frac{ x }{ 1 + x }} } \, \right )\)
\( \mbox{I} \left (\sqrt{ \frac{ x }{ 1 + x }} } \, \right ) = 2 \, \sqrt{ \frac{ x \, . \, (1 + x)^2 }{ 1 + x } } - \ln \left (1 - \sqrt{ \frac{ x }{ 1 + x }} } \, \right ) + \ln \left (1 + \sqrt{ \frac{ x }{ 1 + x }} } \, \right )\)
\( \mbox{I} \left (\sqrt{ \frac{ x }{ 1 + x }} } \, \right ) = 2 \, \sqrt{ x \, . \, (1 + x) } - \ln \left (1 - \sqrt{ \frac{ x }{ 1 + x }} } \, \right ) + \ln \left (1 + \sqrt{ \frac{ x }{ 1 + x }} } \, \right ) \)
(*) .Verder hebben we:
\( \mbox{val}(x) = \frac{1}{4} \, . \, \sqrt{ 1 + x } \,\, . \, \mbox{I} \left ( \sqrt{ \frac{ x }{ 1 + x }} } \, \right ) \,\, - \,\,\, \sqrt{x} \)
(formule 15) .Invullen van formule (*) in formule 15 geeft:
\( \mbox{val}(x) = \frac{1}{4} \, . \, \sqrt{ 1 + x } \,\, . \, \left \{ 2 \, \sqrt{ x \, . \, (1 + x) } - \ln \left (1 - \sqrt{ \frac{ x }{ 1 + x }} } \, \right ) + \ln \left (1 + \sqrt{ \frac{ x }{ 1 + x }} } \right ) \, \right \} \,\,\, - \,\,\,\, \sqrt{x} \)
(formule 17) .