Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
kr7
Artikelen: 0
Berichten: 8
Lid geworden op: wo 23 jan 2013, 17:32

stelsel met twee variabelen

Wat denken jullie dat het antwoord is bij vraag 3 van de multiple choice van dit(zie link) examen?

http://ekowiki.ekonomika.be/wiki/images ... i_2013.pdf

Alvast bedankt!
EvilBro
Artikelen: 0
Berichten: 7.081
Lid geworden op: vr 30 dec 2005, 09:45

Re: stelsel met twee variabelen

\(x^2 + y^2 = 5\)
beschrijft een cilinder met een straal
\(\sqrt{5}\)
. Op deze cilinder moet je de functie x+2*y eens bekijken en bedenken hoe het vlak f(x,y) de cilinder doorsnijdt.
kr7
Artikelen: 0
Berichten: 8
Lid geworden op: wo 23 jan 2013, 17:32

Re: stelsel met twee variabelen

Heeft het dan niets met de tussenwaardestelling te maken?
EvilBro
Artikelen: 0
Berichten: 7.081
Lid geworden op: vr 30 dec 2005, 09:45

Re: stelsel met twee variabelen

Daar heeft het alles mee te maken. Op de cilinder projecteren f(x,y) en x+2*y een functie. Knip de cilinder open en je hebt twee functies. Je kan nu met de tussenwaardestelling antwoorden c en d evalueren.
kr7
Artikelen: 0
Berichten: 8
Lid geworden op: wo 23 jan 2013, 17:32

Re: stelsel met twee variabelen

EvilBro schreef: do 24 jan 2013, 01:00
Daar heeft het alles mee te maken. Op de cilinder projecteren f(x,y) en x+2*y een functie. Knip de cilinder open en je hebt twee functies. Je kan nu met de tussenwaardestelling antwoorden c en d evalueren.


bedankt!

als je het herschrijft als x+2y=f(x,vierkantswortel(5-x2)) dan zou het c moeten zijn vermoed ik? Aangezien er dan een negatieve functiewaarde en een positieve functiewaarde is, moet er wel een x zijn waarvoor het 0 is en de 2 vergelijkingen dus aan elkaar zijn. Klopt dat?
EvilBro
Artikelen: 0
Berichten: 7.081
Lid geworden op: vr 30 dec 2005, 09:45

Re: stelsel met twee variabelen

Nee, dat klopt niet. Uit
\(x^2 + y^2 = 5\)
kunnen we opmaken dat het gaat om een cilinder. Stel dat we nu overgaan op poolcoordinaten:
\(x = \sqrt{5} \cos(\theta)\)
\(y = \sqrt{5} \sin(\theta)\)
dan:
\(x+2 y = \sqrt{5} \cos(\theta) + 2 \sqrt{5} \sin(\theta)\)
Hiermee kun je de functie op de cilinder tekenen (afhankelijk van de hoek). In dit vlak kun je ook de punten van c plaatsen (bij de juiste hoeken). Zoals je kan zien is het prima mogelijk om een continue functie te verzinnen door de rode punten die niet snijdt met de blauwe functie.
test
test 755 keer bekeken
kr7
Artikelen: 0
Berichten: 8
Lid geworden op: wo 23 jan 2013, 17:32

Re: stelsel met twee variabelen

EvilBro schreef: do 24 jan 2013, 14:49
Nee, dat klopt niet. Uit
\(x^2 + y^2 = 5\)
kunnen we opmaken dat het gaat om een cilinder. Stel dat we nu overgaan op poolcoordinaten:
\(x = \sqrt{5} \cos(\theta)\)
\(y = \sqrt{5} \sin(\theta)\)
dan:
\(x+2 y = \sqrt{5} \cos(\theta) + 2 \sqrt{5} \sin(\theta)\)
Hiermee kun je de functie op de cilinder tekenen (afhankelijk van de hoek). In dit vlak kun je ook de punten van c plaatsen (bij de juiste hoeken). Zoals je kan zien is het prima mogelijk om een continue functie te verzinnen door de rode punten die niet snijdt met de blauwe functie.

[attachment=12330:test.jpg]


Dus dan is D volgens jou het correcte antwoord...?
EvilBro
Artikelen: 0
Berichten: 7.081
Lid geworden op: vr 30 dec 2005, 09:45

Re: stelsel met twee variabelen

Dat denk ik wel. f is immers continue, dus ook continue op de cilinder. Tussenwaardestelling maakt het onmogelijk dat er geen snijpunt is.
kr7
Artikelen: 0
Berichten: 8
Lid geworden op: wo 23 jan 2013, 17:32

Re: stelsel met twee variabelen

EvilBro schreef: do 24 jan 2013, 15:03
Dat denk ik wel. f is immers continue, dus ook continue op de cilinder. Tussenwaardestelling maakt het onmogelijk dat er geen snijpunt is.


Hoe kom je er eigenlijk op dat het het een cilinder is? Waarom is het niet gewoon een cirkel?
EvilBro
Artikelen: 0
Berichten: 7.081
Lid geworden op: vr 30 dec 2005, 09:45

Re: stelsel met twee variabelen

Ik zie de linkerkant van de eerste vergelijking als een definitie van een vlak met \(z(x,y) = x+2 \cdot y\). Wat je wilt weten is hoe dit vlak snijdt met de cilinder met straal \(\sqrt{5}\). Dat zijn de waarden waarin je geinteresseerd bent.
kr7
Artikelen: 0
Berichten: 8
Lid geworden op: wo 23 jan 2013, 17:32

Re: stelsel met twee variabelen

EvilBro schreef: do 24 jan 2013, 16:22
Ik zie de linkerkant van de eerste vergelijking als een definitie van een vlak met \(z(x,y) = x+2 \cdot y\). Wat je wilt weten is hoe dit vlak snijdt met de cilinder met straal \(\sqrt{5}\). Dat zijn de waarden waarin je geinteresseerd bent.


Maar het is toch helemaal geen cilinder?
EvilBro
Artikelen: 0
Berichten: 7.081
Lid geworden op: vr 30 dec 2005, 09:45

Re: stelsel met twee variabelen

Stel je een driedimensionaal-assenstelsel voor. f(x,y) is de hoogte van een vlak op (x,y). z(x,y) is de hoogte van een ander vlak op (x,y). Beide vlakken zijn geen cilinder. Dat zijn vlakken. \(x^2 + y^2 = 5\) en elke hoogte (want onafhankelijk van de hoogte) is een cilinder. Je bent nu geinteresseerd in de punten die zowel op de cilinder als op de beide vlakken liggen.
kr7
Artikelen: 0
Berichten: 8
Lid geworden op: wo 23 jan 2013, 17:32

Re: stelsel met twee variabelen

EvilBro schreef: do 24 jan 2013, 18:29
Stel je een driedimensionaal-assenstelsel voor. f(x,y) is de hoogte van een vlak op (x,y). z(x,y) is de hoogte van een ander vlak op (x,y). Beide vlakken zijn geen cilinder. Dat zijn vlakken. \(x^2 + y^2 = 5\) en elke hoogte (want onafhankelijk van de hoogte) is een cilinder. Je bent nu geinteresseerd in de punten die zowel op de cilinder als op de beide vlakken liggen.


Voor x^2+y^2=5 is z=0

http://nl.m.wikipedia.org/wiki/Cartesia ... rgelijking

(zie krommen bij voorbeelden), toch? Dan moet het toch antwoord 3 zijn? Ik begrijp niet waarom het concept cilinder hier van toepassing zou zijn
EvilBro
Artikelen: 0
Berichten: 7.081
Lid geworden op: vr 30 dec 2005, 09:45

Re: stelsel met twee variabelen

Waarom zou z nul zijn? Dat staat nergens. Elke z mag.

Bekijk het anders. x en y liggen op een cirkel. Je kan deze cirkel beschrijven met een straal en een hoek. De straal is constant en de hoek loopt van 0 tot 2 pi. Je kan nu x+2*y plotten tegen de hoek. Dit is het plaatje in mijn eerdere bericht. Daarin staat ook antwoord c geplot. Antwoord c kan dus niet goed zijn.
kr7
Artikelen: 0
Berichten: 8
Lid geworden op: wo 23 jan 2013, 17:32

Re: stelsel met twee variabelen

EvilBro schreef: do 24 jan 2013, 18:53
Waarom zou z nul zijn? Dat staat nergens. Elke z mag.

Bekijk het anders. x en y liggen op een cirkel. Je kan deze cirkel beschrijven met een straal en een hoek. De straal is constant en de hoek loopt van 0 tot 2 pi. Je kan nu x+2*y plotten tegen de hoek. Dit is het plaatje in mijn eerdere bericht. Daarin staat ook antwoord c geplot. Antwoord c kan dus niet goed zijn.
Ok, bedankt.

En hoe kan je dat dan weten als je niet kan/mag plotten?

Terug naar “Wiskunde”