Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
wim209
Artikelen: 0
Berichten: 6
Lid geworden op: za 08 dec 2012, 17:27

standaard afwijking berekenen

Hallo,

Ik bezig met mijn profielwerkstuk en ik wilde toch iets extra's toevoegen. Ik heb een aantal resultaten, en wil daarmee berekenen of de gemiddeldes die ik heb significant afwijken. Mijn wiskunde leraar heeft niet gereageerd op mijn mail, dus wil ik het graag hier vragen. Als significantieniveau mocht ik 0,05 gebruiken (5%). De getallen die ik heb zijn (met het gemiddelde erbij). Ik heb het geprobeerd via wolframalpha te doen, maar ik kom er daar niet uit in het engels. Mijn wiskundeboek staat het ook niet in. Is het uberhaupt mogelijk om dit te berekenen met deze getallen?

(6,63 + 6,33 + 5,44 + 6,3 + 6,18) / 5 = 6,18
wim209
Artikelen: 0
Berichten: 6
Lid geworden op: za 08 dec 2012, 17:27

Re: standaard afwijking berekenen

(6,45 + 6,33 + 5,44 + 6,30 + 6,18) / 5 = 6,14

Sorry dit zijn de juiste getallen. Dat 5,44 van het gemiddelde afwijkt kon ik al wel zien, maar ik wilde dat graag nog laten zien met een berekening. Ik heb lang gezocht maar heb dat echter nergens kunnen vinden. HELP!
Gast037
Artikelen: 0
Berichten: 20
Lid geworden op: di 29 jan 2013, 11:40

Re: standaard afwijking berekenen

De standaardafwijking (sigma) bereken je door het verschil tussen elke meetwaarde en het gemiddelde te kwadrateren, al deze kwadraten bij elkaar op te tellen, te delen door het aantal meetwaarden - 1 (dus in dit geval: 5-1 = 4). Tot slot neem je hier de wortel van. Het getal dat je nu krijgt, is de standaardafwijking / standaarddeviatie. Hiermee kun je misschien verder. Succes!
Gebruikersavatar
Jaimy11
Artikelen: 0
Berichten: 614
Lid geworden op: wo 14 sep 2011, 13:49

Re: standaard afwijking berekenen

\(\sigma =\sqrt{\frac{1}{4}}(=\frac{1}{2}) \cdot \sqrt{(6,45-6,14)^2+(6,33-6,14)^2+(5,44-6,14)^2+(6,30-6,14)^2+(6,18-6,14)^2}\)
Gast037
Artikelen: 0
Berichten: 20
Lid geworden op: di 29 jan 2013, 11:40

Re: standaard afwijking berekenen

En welk getal volgt daaruit Jaimy?
Gebruikersavatar
Kliche
Artikelen: 0
Berichten: 196
Lid geworden op: ma 12 mar 2012, 16:52

Re: standaard afwijking berekenen

Dat getal (sd) kun je weer invullen voor een z-score.

Z = (5,44 - 6,18) / sd
Gebruikersavatar
Kliche
Artikelen: 0
Berichten: 196
Lid geworden op: ma 12 mar 2012, 16:52

Re: standaard afwijking berekenen

Ik kom met de sd-waarde op

sd = √ (0,6478 / 4)

sd = 0,4024

Vervolgens kan de z-score worden gebruikt om uit te drukken (in standaarddeviaties) hoeveel keer een individuele waarde afwijkt van het gemiddelde.

Z = (Xi - Xgemiddeld) / sd

Z = (5,44 - 6,14) / 0,4024

Z = -1,74

De individuele waarde 5,44 wijkt dus -1,74 keer de standaarddeviatie af (kleiner) van het gemiddelde.

Ben ernstig aan mezelf aan het twijfelen nu, deze meuk gaat tegenwoordig allemaal geautomatiseerd :P
Gast037
Artikelen: 0
Berichten: 20
Lid geworden op: di 29 jan 2013, 11:40

Re: standaard afwijking berekenen

Dat klopt, maar de truc is om het zelf te begrijpen. Het klopt wel wat je zegt, ik kan zo geen foutje ontdekken

Terug naar “Wiskunde”