Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
Th.B
Artikelen: 0
Berichten: 546
Lid geworden op: wo 22 aug 2012, 16:48

Regels voor limieten

Ik ben bezig aan een cursus multivariabele calculus en ben aangekomen bij partiele afgeleiden, de kettingregel voor meerdere variabelen etc. etc.

Nu wilde ik graag zelf een formeel bewijs geven van de stelling dat

fxy = fyx

Het bewijs was nou niet echt elegant en een hoop geschrijf, maar ik ben er wel van overtuigd dat het klopt. Ik heb echter een paar aannames gedaan over limieten waarvan ik niet weet of ze altijd gerechtvaardigd zijn. Kan iemand mij vertellen onder welke voorwaarden de volgende regels gelden?

1. limx ->a (f(x)) + limx->a (g(x)) = limx->a (f(x) + g(x))

2. k . limx->a (f(x)) = limx->a (k . f(x))

3. limx->a(limy->b(f(x,y))) = limy->b(limx->a(f(x,y)))

Bij voorbaat dank!
Gebruikersavatar
TD
Artikelen: 0
Berichten: 24.578
Lid geworden op: ma 09 aug 2004, 17:31

Re: Regels voor limieten

Th.B schreef: zo 14 jul 2013, 19:43
1. limx ->a (f(x)) + limx->a (g(x)) = limx->a (f(x) + g(x))
Als de twee afzonderlijke limieten (in het linkerlid) bestaan, dan geldt de gelijkheid.
Th.B schreef: zo 14 jul 2013, 19:43
2. k . limx->a (f(x)) = limx->a (k . f(x))
Als de limiet van f (in het linkerlid) bestaat, dan geldt de gelijkheid (met k een reëel getal).
Th.B schreef: zo 14 jul 2013, 19:43
3. limx->a(limy->b(f(x,y))) = limy->b(limx->a(f(x,y)))
Dit is al veel subtieler: in het algemeen mag je de volgorde van het nemen van limieten niet verwisselen.

Als de dubbele limiet
\(\lim_{(x,y)\to (a,b)} f(x,y) = L\)
bestaat (in dit voorbeeld met limiet L), dan bestaan beide limieten die jij noteert ook en ze zijn beide L. Dit is een voldoende maar geen nodige voorwaarde, het is een behoorlijk 'strenge eis'.
"Malgré moi, l'infini me tourmente." (Alfred de Musset)

Terug naar “Wiskunde”