Beste forumleden, ik moet een functie f(x,y) bedenken die aan de volgende voorwaarden voldoet: f(0,y) = 0 voor alle y, f(1,y) = 1, f(0,5 ; y) = y, f(x,y) beslaat het gehele interval [0,1] voor x en y op [0,1]. Voor x < 0,5 moet f(x,y) < y en vice versa. Kan iemand mij hierbij helpen? Ik heb geen idee...
Ben je zeker dat zo'n functie bestaat? Waar komt de opgave vandaan?
Uit "f'(0, y) = 0" volgt er duidelijk meteen dat er geen constante term kan zijn, maar ook geen term zonder x. Met deze info zie ik niet hoe er ooit kan voldaan zijn aan "f(1, y) = 1"...
Dit is de volledige vraag: neem een sport waarbij er geen gelijkspel bestaat. Beschouw nu: P(A wint van B) = x en P(B wint van C) = y. Verzin een rekenmethode voor P(A wint van C). Als de kans dat A van B wint 0 is, is de kans dat hij van C wint logisch gezien ook nul. Als A altijd wint van B en B soms van C dan wint A ook altijd van C. Als A en B even goed zijn (x=0,5) dan wint A even vaak van C als B. Omdat we met kansen werken zijn er restricties voor het bereik van de functie op het interval waar ik het over had. Maak ik soms een denkfout? De vraag komt uit het boekje 'het labyrint van Occam' van Arnout Jaspers. Echt een aanrader trouwens, vol met dit soort breinbrekers en echt veel wiskundekennis heb je niet nodig.
Het boek komt met de volgende ingenieuze oplossing: f(x,y) = xy / [ xy + (1-x)(1-y) ]. Daar stond ik toch even van te kijken... Het ging dus niet om het vinden van een polynoom, maar deze gebroken functie voldoet dus wel
Men redeneert als volgt: stel dat A bijvoorbeeld in 7 partijen 5 keer wint van B. Dan won B dus twee keer en is A in zekere zin 5/2 keer zo goed als B. Op dezelfde manier maak je een breuk voor hoeveel keer zo goed B is als C. Die vermenigvuldig je met elkaar en zoveel keer is A beter dan C. Daar haal je dan de winstkans uit. Als je dat in de formule giet krijg je wat ik postte in #4. Voor Evilbro: dat klinkt inderdaad redelijk, ik ben het wel met je eens, maar de formule voldoet wel aan f(0,y) = 0. Is de oplossing van het boek dan toch niet helemaal plausibel?