Gebruikersavatar
Esthetisch
Artikelen: 0
Berichten: 113
Lid geworden op: vr 19 jul 2013, 13:06

snelheid van naderen oneindig

Neem 2 functies neemt die beide naar oneindig gaan.

Bijvoorbeeld

a =
\(\sum_{n=1}^{\infty }\frac{1}{n}\)
En

b =
\(\sum_{pn}^{\infty }\frac{1}{p}\)
Bij a neem je dus alle breuken met een getal n, en bij b neem je alle breuken met een priemgetal.

Beide formules a en b naderen naar oneindig, elk met zijn eigen snelheid. Je weet bijvoorbeeld dat a altijd groter zal zijn dan b. De oneindigheid van a is op 1 of andere manier evenredig met de oneindigheid van b, waarbij a dus sneller grotere wordt dan b.

Hoe drukt de 'wiskunde' dat verschil in snelheid nu uit? Bestaat er een manier om de grootte van a als functie van b te geven? Door bijvoorbeeld een speciale notatie toe te voegen? Is er een manier om, wanneer je de grote van a weet, daarmee ook direct de grote van b te bepalen? Of zul je dan toch n weer moeten invullen in b, en daarmee b moeten berekenen?
Destruction has an end. Creation doesn't.
Gebruikersavatar
kwasie
Artikelen: 0
Berichten: 821
Lid geworden op: wo 18 sep 2013, 21:18

Re: snelheid van naderen oneindig

Er zijn wel benaderingen van de verdeling van priemgetallen, en andere formules die benaderingen van eigenschappen geven.

Maar er is nog altijd geen formule gevonden om priemgetallen direct te bepalen.

Het is dus niet mogelijk om een formule op te stellen om direct het verschil tussen a en b te bepalen.
Gebruikersavatar
Esthetisch
Artikelen: 0
Berichten: 113
Lid geworden op: vr 19 jul 2013, 13:06

Re: snelheid van naderen oneindig

Bedankt, dit was inderdaad wat ik zocht.
Destruction has an end. Creation doesn't.
Bartjes
Artikelen: 0

Re: snelheid van naderen oneindig

Esthetisch schreef: di 24 sep 2013, 22:08
Bedankt, dit was inderdaad wat ik zocht.
Graag gedaan. Ook interessant is Hardy's boek:

http://archive.org/details/ordersofinfinity00harduoft

http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.bams/1183423035

Terug naar “Analyse en Calculus”