Gymnasiast X
Artikelen: 0
Berichten: 1
Lid geworden op: wo 07 apr 2004, 19:06

Fourier

Hallo allemaal,

:shock: Ik zit in 5gymnasium en voor het vak wiskunde maak ik een praktische opdracht over differentiaalvergelijkingen. Tot nu toe heb ik voor alle vergelijkingen kloppende oplossingen gevonden, maar voor onderstaande vergelijking zou ik het niet weten. Mijn wiskundedocent zei dat het iets met de Fouriermethode te maken heeft, maar aangezien dit onderwerp boven de VWO stof staat, hoeven we het niet op te lossen. Echter, ik zou graag willen weten wat Fourier inhoudt en wat de oplossing van de differentiaalvergelijking is!

dy/dx= sinx/x

Wie kan mij helpen, ik zou dat heel leuk vinden!
Gebruikersavatar
Syd
Artikelen: 0
Berichten: 1.107
Lid geworden op: ma 08 dec 2003, 12:40

Re: Fourier

Gebruikersavatar
DePurpereWolf
Artikelen: 0
Berichten: 9.240
Lid geworden op: wo 12 mar 2003, 19:44

Re: Fourier

Ik wil niet zeuren, want ik ben helemaal niet zo goed in Wiskunde, maar wat heeft het voor zin om de gehele fourier kennis te gaan leren om gewoon een diff vergelijking op te lossen, heeft het niet meer zin om informatie te vinden over differentiaal vergelijkingen?
BugsBunny
Artikelen: 0
Berichten: 8
Lid geworden op: di 30 mar 2004, 09:40

Re: Fourier

De Fouriertransformatie heeft er mee te maken dat elk signaal te schrijven valt als een (oneindige) som van sinussen en cosinussen.

Echter, voor deze DV schrijf je de oplossing als een oneindige som van machten van x. Met de term Fourier schiet hij dus een fameuze kemel. Als complete leek zal de oplossing niet zo gemakkelijk te vinden zijn en ik zou er echt niet aan beginnen.

Indien je je niet kan bedwingen geef ik je een referentie waar je de methodes in kan vinden om zulke vgl met succes aan te pakken:

Differential Equations and Boundary Value Problems. (door Boyce en di Prima)

De oplossing is:

y = x - x^3 / (3.3!) + x^5 / (5.5!) - ...
Bert
Artikelen: 0
Berichten: 718
Lid geworden op: za 10 apr 2004, 11:39

Re: Fourier

Het heeft niets met Fourier te maken maar alles met Taylor reeksen.

De sin kun je ook schrijven als:

sin(x)=x - x^3/3! + x^5/5! - x^7/7! + x9/9! - ....

Van daaruit kun kun je het verder zelf. Een simpelere oplossing bestaat helaas niet.

Een Taylor reeks kun je van iedere functie maken:

f(x)=f(0)+x*f'(0)/1! + x^2*f''(0)/2! + x^3*f'''(0)/3!+....

mits de reeks convergeert uiteraard.

Terug naar “Huiswerk en Practica”