\( x^m = \sum\limits_{k=1}^{m+1} \left \{ \begin{array}{cols} m+1 \\ k \end{array}\right \} (x-1)^{\underline{k-1}} \)
\(\)
\( x^m = \sum\limits_{i=0}^m (x-1)^{\underline{i}} \cdot \left \{ \begin{array}{cols} m+1 \\ i+1 \end{array}\right \} \)
\(\)
\( x^m = \sum\limits_{i=0}^m (x-1)^{\underline{i}} \cdot \frac{1}{(i+1)!} \sum\limits_{j=0}^{i+1} (-1)^j \left ( \begin{array}{cols} i+1 \\ j \end{array}\right ) (i+1-j)^{m+1} \)
\(\)
\( x^m = \sum\limits_{i=0}^m (x-1)^{\underline{i}} \cdot \frac{1}{(i+1)!} \sum\limits_{j=0}^i (-1)^j \left ( \begin{array}{cols} i+1 \\ j \end{array}\right ) (i+1-j)^{m+1} \)
\(\)
\( x^m = \sum\limits_{i=0}^m \frac{(x-1)^{\underline{i}}}{ i! } \cdot \frac{1}{i+1} \sum\limits_{j=0}^i (-1)^j \left ( \begin{array}{cols} i+1 \\ j \end{array}\right ) (i+1-j)^{m+1} \)
\(\)
\( x^m = \sum\limits_{i=0}^m \left ( \begin{array}{cols} x-1 \\ i \end{array}\right ) \cdot \frac{1}{i+1} \sum\limits_{j=0}^i (-1)^j \left ( \begin{array}{cols} i+1 \\ j \end{array}\right ) (i+1-j)^{m+1} \)
\(\)
\( x^m = \sum\limits_{i=0}^m \left ( \begin{array}{cols} x-1 \\ i \end{array}\right ) \cdot \sum\limits_{j=0}^i \left ( \begin{array}{cols} i+1 \\ j \end{array}\right ) \frac{i+1-j}{i+1} \, (-1)^j (i+1-j)^m \)
\(\)
\( x^m = \sum\limits_{i=0}^m \left ( \begin{array}{cols} x-1 \\ i \end{array}\right ) \cdot \sum\limits_{j=0}^i \left ( \begin{array}{cols} i \\ j \end{array}\right ) (-1)^j (i+1-j)^m \)
\(\)
Weer veel te laat geworden! Geen fut meer om het nog op fouten na te lopen. Nu snel naar bed.