Als voorbereiding op de toepassing van formule (7) berekenen we nu eerst de partiële afgeleiden naar R van 1/r en 1/r
3:
\( \frac{\partial }{\partial R} \frac{1}{r} = \frac{\partial }{\partial R} (R^2 + x^2)^{-1/2} \)
\( \frac{\partial }{\partial R} \frac{1}{r} = -\frac{1}{2} (R^2 + x^2)^{-3/2} \cdot 2R \)
\( \frac{\partial }{\partial R} \frac{1}{r} = - \frac{R}{r^3} \)
\( \frac{\partial }{\partial R} \frac{1}{r^3} = \frac{\partial }{\partial R} (R^2 + x^2)^{-3/2} \)
\( \frac{\partial }{\partial R} \frac{1}{r^3} = -\frac{3}{2} (R^2 + x^2)^{-5/2} \cdot 2R \)
\( \frac{\partial }{\partial R} \frac{1}{r^3} = - 3 \frac{R}{r^5} \)
Toepassing van (11) levert nu::
\( \frac{\partial }{\partial R} \frac{\mathrm{d} x}{\mathrm{d} t} = \frac{\partial }{\partial R} \{ ( 1 -\frac{r_s}{2r} \frac{x^2}{r^2} - \frac{r_s}{2r} ) \cdot c \} \)
\( \frac{\partial }{\partial R} \frac{\mathrm{d} x}{\mathrm{d} t} = ( - \frac{r_s x^2}{2} \frac{\partial }{\partial R} \frac{1}{r^3} - \frac{r_s}{2} \frac{\partial }{\partial R} \frac{1}{r} ) \cdot c \)
\( \frac{\partial }{\partial R} \frac{\mathrm{d} x}{\mathrm{d} t} = (\frac{3 r_s x^2}{2} \frac{R}{r^5} + \frac{r_s}{2} \frac{R}{r^3}) \cdot c \)
\( \frac{\partial }{\partial R} \frac{\mathrm{d} x}{\mathrm{d} t} = (\frac{3 x^2}{r^2} + 1) \cdot \frac{r_s R}{2 r^3} \cdot c \,\,\,\,\,\,\,\, (12) \)