Nee, je maakt een oneindig kleine fout, want de 2-adische afstand van 0 tot 2^(m+1) is 1/2^(m+1).
Het is wel even wennen, die 2-adische getallen;-)
ok, maar wat voegt dat toe aan de conclusie dat de oorspronkelijke gedachte niet klopt en de reden waarom het niet klopt? De reden waarom het niet klopt had ik laten zien. Ben je het daar mee eens?
Dat lijkt me duidelijk blijken uit het grafiekje. Ik kan m zo groot maken als ik wil en het verband blijft dan op dezelfde manier verder toenemen.
Ik denk niet dat je dat mag concluderen. Vroeger op het VWO en daarna uitgebreid gehad en getoetst (maar wel weer een tijd geleden). Dus ik denk dat het probleem eerder is dat we niet op dezelfde golflengte communiceren. De dingen die ik aan jou vraag om het helder te krijgen geeft je geen antwoord op en waar jij naartoe wil en waarom is mij niet helder. Ik denk te begrijpen waarom het sommetje van de TS niet klopt en heb dat duidelijk toegelicht. Misschien helpt het als iemand anders buiten ons aangeeft wat die ervan denkt.
uit de video begrijp ik dat je 1+2+4+8+............... gaat omzetten naar het 2 tallig stelsel en dat gaat optellen. dat geeft een binair getal bestaande uit een oneindige hoeveelheid enen. als je er daarna nog 1 bij telt dan krijg je een oneindige hoeveelheid nullen omdat er steeds een carry is die tot in het oneindige wordt doorgegeven. dus het lijkt net alsof het getal kleiner wordt terwijl je er juist 1 bij optelt omdat je meest significante bit nooit kunt zien. Maar dat maakt het probleem van de TS niet anders volgens mij.
precies dat.