Professor Puntje schreef: ↑vr 11 jun 2021, 23:39
Ik wil eens zien of we wat van de toegepaste benaderingen in de afleiding kunnen omzeilen. Terug naar formules (6) en (7):
\(\)
\( \frac{\mathrm{d}x^2}{\mathrm{d}t^2} = \frac{(1 - \frac{r_s}{r})^2}{ \frac{r_s}{r} \frac{x^2}{r^2} + 1 - \frac{r_s}{r} } \cdot c^2 \,\,\,\,\,\,\,\, (6)\)
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{\frac{\partial}{\partial R} \left ( \frac{\mathrm{d} x}{\mathrm{d}t} \right ) }{\frac{\mathrm{d}x}{\mathrm{d}t}} \,\,\,\,\,\,\,\, (7) \)
\(\)
Dat geeft:
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{\frac{\partial}{\partial R} \left ( \frac{\mathrm{d} x}{c \, \mathrm{d}t} \right ) }{\frac{\mathrm{d}x}{c \, \mathrm{d}t}} \)
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{\partial}{\partial R} \ln(\frac{\mathrm{d}x}{c \, \mathrm{d}t}) \)
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{\partial}{\partial R} \ln \left (\sqrt{\frac{\mathrm{d}x^2}{c^2 \mathrm{d}t^2}} \right ) \)
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{1}{2} \frac{\partial}{\partial R} \ln(\frac{\mathrm{d}x^2}{c^2 \mathrm{d}t^2}) \)
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{1}{2} \frac{\partial}{\partial R} \ln \left (\frac{(1 - \frac{r_s}{r})^2}{ \frac{r_s}{r} \frac{x^2}{r^2} + 1 - \frac{r_s}{r} } \right ) \)
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{1}{2} \frac{\partial}{\partial R} \left \{ \ln \left ((1 - \frac{r_s}{r})^2 \right ) \, - \, \ln \left ( \frac{r_s}{r} \frac{x^2}{r^2} + 1 - \frac{r_s}{r} \right )\right \} \)
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{1}{2} \frac{\partial}{\partial R} \ln \left ((1 - \frac{r_s}{r})^2 \right ) \, - \, \frac{1}{2} \frac{\partial}{\partial R} \ln \left ( \frac{r_s}{r} \frac{x^2}{r^2} + 1 - \frac{r_s}{r} \right ) \)
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{\partial}{\partial R} \ln (1 - \frac{r_s}{r}) \, - \, \frac{1}{2} \frac{\partial}{\partial R} \ln \left ( \frac{r_s}{r} \frac{x^2}{r^2} + 1 - \frac{r_s}{r} \right ) \)
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{\frac{\partial}{\partial R} (1 - \frac{r_s}{r})}{ 1 - \frac{r_s}{r} } \, - \, \frac{1}{2} \frac{ \frac{\partial}{\partial R} \left ( \frac{r_s}{r} \frac{x^2}{r^2} + 1 - \frac{r_s}{r} \right ) }{ \frac{r_s}{r} \frac{x^2}{r^2} + 1 - \frac{r_s}{r} } \)
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{- r_s \frac{\partial}{\partial R} \frac{1}{r}}{ 1 - \frac{r_s}{r} } \, - \, \frac{1}{2} \frac{r_s x^2 \frac{ \partial}{\partial R} \frac{1}{r^3} - r_s \frac{\partial}{\partial R} \frac{1}{r} }{ \frac{r_s}{r} \frac{x^2}{r^2} + 1 - \frac{r_s}{r} } \)
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \frac{ r_s \frac{R}{r^3}}{ 1 - \frac{r_s}{r} } \, - \, \frac{1}{2} \frac{- 3 r_s x^2 \frac{R}{r^5} + r_s \frac{R}{r^3} }{ \frac{r_s}{r} \frac{x^2}{r^2} + 1 - \frac{r_s}{r} } \)
\(\)
\( \frac{\mathrm{d}\varphi}{\mathrm{d}x} = \left ( \frac{1}{ 1 - \frac{r_s}{r} } \, - \, \frac{1}{2} \frac{- 3 \frac{x^2}{r^2} + 1 }{ \frac{r_s}{r} \frac{x^2}{r^2} + 1 - \frac{r_s}{r} } \right ) \cdot r_s \frac{R}{r^3} \,\,\,\,\,\,\, (16) \)
\(\)
De vraag is nu wat voor curve dit oplevert voor R = R
zon en r = √(x
2 + R
zon2). Zitten ook hier die twee pieken al in...?.