Ik moet zo weg, maar dit lijkt me nu een aaneensluitend verhaal:
We beschouwen lichtbuiging semiklassiek aan de hand van geretardeerde gravitatie. Zie onderstaande schets:
Stel je voor dat twee lichtdeeltjes in tegengestelde richting langs de zon scheren. Dan wordt de zon daardoor “naar beneden” getrokken. Omdat de afbuiging van de lichtdeeltjes minimaal is kun je de mate waarin de zon door de lichtdeeltjes wordt aangetrokken eenvoudig berekenen door de banen van de lichtdeeltjes (bij die berekening) als rechte lijnen te beschouwen. De afwijking van de rechte banen wordt immers pas aanmerkelijk heel ver van de zon en daar is de gravitatie-werking van de lichtdeeltjes op zon inmiddels verwaarloosbaar. Als je weet welke neerwaartse impuls de zon door het passeren van de lichtdeeltjes krijgt weet je ook welke impuls omhoog de lichtdeeltjes zelf door het passeren van de zon verkrijgen. En daar volgt dan de afbuiging van de lichtdeeltjes uit.
Lichtdeeltjes (tegenwoordig fotonen genaamd) hebben een onbekende rustmassa, men neemt aan dat die nul of in ieder geval heel klein is. Voor onze semiklassieke afleiding veronderstellen we dat lichtdeeltjes een minieme massa van m (dus niet nul) hebben en zich met de lichtsnelheid c (of bij benadering met de snelheid c) voortbewegen. De exacte waarde van m is irrelevant want die valt uit de eindformule toch weer weg. Van heel grote afstand bekeken ziet de interactie van de lichtdeeltjes met de zon eruit als een simpele botsing in een (nagenoeg vlakke) ruimtetijd. Als eindresultaat heb je op opnieuw twee lichtdeeltjes die in een veranderde richting bewegen en de zon die een "neerwaartse" snelheid heeft gekregen. Het is onaannemelijk dat er bij dit proces gravitatiegolven met een aanmerkelijke impuls zijn opgewekt. Daarom gaan we ervan uit dat klassiek impulsbehoud weliswaar niet instantaan maar wel voor de botsing als geheel geldig blijft.
Aangezien de lichtdeeltjes zeer snel bewegen en de zon veel zwaarder dan de lichtdeeltjes is zal de zon gedurende het passeren van de lichtdeeltjes nauwelijks van haar plaats komen. Bovendien is de afbuiging van de lichtdeeltjes zelf zeer gering. We kunnen de krachtstoot die de zon als gevolg van het passeren van de lichtdeeltjes ondergaat daarom bij benadering berekenen door te veronderstellen dat de zon zich in een xy-stelsel op de positie (0,d) bevindt (met d het perihelium) en de twee lichtdeeltjes in tegengestelde richting met de lichtsnelheid c over de x-as bewegen. Dat geeft onderstaande (benaderde) situatie:
Voor de instantane gravitatie-werking Fi(t) op de zon hebben we dan:
\( F_i(t) = 2 \mathrm{G} \cdot \frac{ \mathrm{M} \mathrm{m}}{ x_1^2(t) + \mathrm{d}^2} \cdot \cos(\alpha) \)
\( F_i(t) = 2 \mathrm{G} \cdot \frac{ \mathrm{M} \mathrm{m}}{ x_1^2(t) + \mathrm{d}^2} \cdot \frac{ \mathrm{d} }{ \sqrt{ x_1^2(t) + \mathrm{d}^2 }} \)
\( F_i(t) = 2 \mathrm{G} \cdot \frac{ \mathrm{M} \mathrm{m} \mathrm{d}}{ (x_1^2(t) + \mathrm{d}^2)^{1,5}} \)
\( F_i(t) = 2 \mathrm{G} \cdot \frac{ \mathrm{M} \mathrm{m} \mathrm{d}}{ (\mathrm{c}^2 t^2 + \mathrm{d}^2)^{1,5}} \)
Voer nu voor het gemak de nieuwe dimensieloze variabelen \( \tau = \frac{ \mathrm{c} t }{ \mathrm{d} } \) en \( \tau' = \frac{ \mathrm{c} t' }{ \mathrm{d} } \) in. Dan hebben we:
\( F_i(t) = 2 \mathrm{G} \cdot \frac{ \mathrm{M} \mathrm{m} \mathrm{d}}{ (\mathrm{c}^2 t^2 + \mathrm{d}^2)^{1,5}} \)
\( F_i(t) = 2 \mathrm{G} \cdot \frac{ \mathrm{M} \mathrm{m} \mathrm{d}}{ ( \tau^2 \mathrm{d}^2 + \mathrm{d}^2)^{1,5}} \)
\( F_i(t) = \frac{2 \mathrm{G}}{ \mathrm{d}^3 } \cdot \frac{ \mathrm{M} \mathrm{m} \mathrm{d}}{ ( \tau^2 + 1)^{1,5}} \)
\( F_i(t) = \frac{2 \mathrm{G} \mathrm{M} \mathrm{m} }{ \mathrm{d}^2 } \cdot \frac{1}{ ( \tau^2 + 1)^{1,5}} \)
\( \mathrm{c} t' = \frac{\mathrm{c}^2 t^2 - \mathrm{d}^2}{ 2 \mathrm{c} t } \)
\( \tau' \mathrm{d} = \frac{\tau^2 \mathrm{d}^2 - \mathrm{d}^2}{ 2 \tau \mathrm{d} } \)
\( \tau' = \frac{\tau^2 - 1}{ 2 \tau } \)
\( (\tau')^2 = \frac{\tau^4 - 2 \tau^2 + 1}{ 4 \tau^2 } \)
\( (\tau')^2 + 1 = \frac{\tau^4 - 2 \tau^2 + 1 + 4 \tau^2}{ 4 \tau^2 } \)
\( (\tau')^2 + 1 = \frac{\tau^4 + 2 \tau^2 + 1 }{ 4 \tau^2 } \)
\( (\tau')^2 + 1 = \frac{(\tau^2 + 1)^2 }{ 4 \tau^2 } \)
\( (\tau')^2 + 1 = \left ( \frac{\tau^2 + 1 }{ 2 \tau} \right )^2\)
\( ((\tau')^2 + 1)^{1,5} = \left | \frac{\tau^2 + 1 }{ 2 \tau} \right |^3\)
\( \frac{1}{((\tau')^2 + 1)^{1,5}} = \left | \frac{ 2 \tau }{ \tau^2 + 1 } \right |^3\)
En dan komt er nu (via het vervangen van \( \tau \) door \( \tau' \)) voor de geretardeerde kracht \( F_r(t) \) op de zon:
\( F_r(t) = \frac{2 \mathrm{G} \mathrm{M} \mathrm{m} }{ \mathrm{d}^2 } \cdot \left | \frac{ 2 \tau }{\tau^2 + 1} \right |^3 \)
De totale krachtstoot J op de zon wordt dan:
\( \mathrm{J} = \int \limits_{-\infty}^{+\infty} F_r(t) \, dt \)
\( \mathrm{J} = \int \limits_{-\infty}^{+\infty} \left ( \frac{2 \mathrm{G} \mathrm{M} \mathrm{m} }{ \mathrm{d}^2 } \cdot \left | \frac{ 2 \tau }{\tau^2 + 1} \right |^3 \right ) \, d(\frac{\mathrm{d} \tau}{\mathrm{c}}) \)
\( \mathrm{J} = \int \limits_{-\infty}^{+\infty} \left ( \frac{2 \mathrm{G} \mathrm{M} \mathrm{m} }{ \mathrm{c} \mathrm{d} } \cdot \left | \frac{ 2 \tau }{\tau^2 + 1} \right |^3 \right ) \, d \tau \)
\( \mathrm{J} = \frac{ 2 \mathrm{G} \mathrm{M} \mathrm{m} }{ \mathrm{c} \mathrm{d} } \cdot \int \limits_{-\infty}^{+\infty} \left | \frac{ 2 \tau }{\tau^2 + 1} \right |^3 \, d \tau \)
\( \mathrm{J} = \frac{ 2 \mathrm{G} \mathrm{M} \mathrm{m} }{ \mathrm{c} \mathrm{d} } \cdot 4 \)
\( \mathrm{J} = \frac{ 8 \mathrm{G} \mathrm{M} \mathrm{m} }{ \mathrm{c} \mathrm{d} } \)
Als we ervan uit gaan dat de weg gestraalde impuls verwaarloosbaar is vinden we voor de afbuiging \( \phi \) van de twee lichtdeeltjes wegens impulsbehoud dat:
\( 2 \cdot \mathrm{m} \mathrm{c} \sin(\phi) = \mathrm{J} \)
\( 2 \cdot \mathrm{m} \mathrm{c} \sin(\phi) = \frac{ 8 \mathrm{G} \mathrm{M} \mathrm{m} }{ \mathrm{c} \mathrm{d} } \)
\( \sin(\phi) = \frac{ 4 \mathrm{G} \mathrm{M} }{ \mathrm{c}^2 \mathrm{d} } \)
Voor het berekenen van de juiste afbuiging van licht dat langs de zon scheert heb je de relativiteitstheorie dus niet nodig, de extra factor 2 van de relativistische waarde voor de afbuiging vind je ook door simpelweg rekening te houden met de retardatie van een klassieke gravitatie-werking.