Oplossing: Om te beginnen kunnen we een flink deel van een eerder geposte oplossing van een andere opgave met wat kleine aanpassingen hier hergebruiken. Omdat we hebben te doen met een niet elektrisch geladen en niet roterend zwart gat met massa M en een bundel radiaal invallend afval met totale rustmassa m mogen we de onderstaande vereenvoudigde schwarzschildmetriek toepassen:
\(\)
\( \mathrm{d}s^2 = (1 - \frac{r_s}{r}) c^2 \mathrm{d} t^2 \, - \, \frac{\mathrm{d} r^2}{ 1 - \frac{r_s}{r}} \,\,\,\,\,\,\,\, (1) \)
\(\)
Met voor tijdachtig gescheiden gebeurtenissen:
\(\)
\( c^2 \mathrm{d}\tau^2 = (1 - \frac{r_s}{r}) c^2 \mathrm{d} t^2 \, - \, \frac{\mathrm{d} r^2}{ 1 - \frac{r_s}{r}} \,\,\,\,\,\,\,\, (2) \)
\(\)
En voor ruimteachtig gescheiden gebeurtenissen:
\(\)
\( \mathrm{d}\sigma^2 = - (1 - \frac{r_s}{r}) c^2 \mathrm{d} t^2 \, + \, \frac{\mathrm{d} r^2}{ 1 - \frac{r_s}{r}} \,\,\,\,\,\,\,\, (3) \)
\(\)
\(\)
We bekijken nu een bolschil met r-coördinaat r
0 (voor r
0 > r
s) en infinitesimale dikte dr. De bundel vallend afval zal dan gemeten door een (oneindig) verre waarnemer een infinitesimaal tijdje dt doen over het passeren van het traject van r
0 naar r
0 - dr. De aldus gemeten snelheid -(dr/dt) noemen we v. Er geldt dan:
\(\)
\( c^2 \mathrm{d}\tau^2 = (1 - \frac{r_s}{r_0}) \, c^2 \mathrm{d} t^2 \, - \, \frac{\mathrm{d} r^2}{1 - \frac{r_s}{r_0} } \)
\(\)
\( 1 = (1 - \frac{r_s}{r_0}) \,\frac{c^2 \mathrm{d} t^2}{ c^2 \mathrm{d}\tau^2 } \, - \, \frac{\mathrm{d} r^2}{ (1 - \frac{r_s}{r_0}) \,c^2 \mathrm{d}\tau^2 } \)
\(\)
\( 1 = (1 - \frac{r_s}{r_0}) \,\frac{ \mathrm{d} t^2}{ \mathrm{d}\tau^2 } \, - \, \frac{\mathrm{d} r^2}{ (1 - \frac{r_s}{r_0}) \,c^2 \mathrm{d}\tau^2 } \)
\(\)
\( 1 = (1 - \frac{r_s}{r_0}) \,\frac{ \mathrm{d} t^2}{ \mathrm{d}\tau^2 } \, - \, \frac{\mathrm{d} r^2}{ (1 - \frac{r_s}{r_0}) \,c^2 \mathrm{d}t^2} \frac{\mathrm{d} t^2}{ \mathrm{d}\tau^2 } \)
\(\)
\( 1 = (1 - \frac{r_s}{r_0}) \,\frac{ \mathrm{d} t^2}{ \mathrm{d}\tau^2 } \, - \, \frac{v^2}{ (1 - \frac{r_s}{r_0}) \,c^2 } \frac{\mathrm{d} t^2}{ \mathrm{d}\tau^2 } \)
\(\)
\( \frac{1}{1 - \frac{r_s}{r_0}} = \frac{ \mathrm{d} t^2}{ \mathrm{d}\tau^2 } \, - \, \frac{v^2}{ (1 - \frac{r_s}{r_0})^2 \,c^2 } \frac{\mathrm{d} t^2}{ \mathrm{d}\tau^2 } \)
\(\)
\( \frac{1}{1 - \frac{r_s}{r_0}} = \left (1 \, - \, \frac{v^2}{ (1 - \frac{r_s}{r_0})^2c^2 } \right ) \frac{\mathrm{d} t^2}{ \mathrm{d}\tau^2 } \)
\(\)
\( \frac{1}{ (1 \, - \, \frac{r_s}{r_0}) \left ( 1 \, - \, \frac{v^2}{ \left (1 - \frac{r_s}{r_0} \right )^2c^2 } \right )} = \frac{\mathrm{d} t^2}{ \mathrm{d}\tau^2 } \,\,\,\,\,\,\,\, (4) \)
\(\)
Heel ver weg (ideaal gesproken voor r = ∞) geldt dan:
\(\)
\( \frac{1}{ \sqrt{1 \, - \, \frac{v_{\infty}^2}{ c^2 } }} = \frac{\mathrm{d} t}{ \mathrm{d}\tau } \,\,\,\,\,\,\,\, (5) \)
\(\)
Dus heel ver weg geldt eenvoudig de speciaal relativistische tijdsdilatatie.
In de SRT geldt voor de energie E van een object met rustmassa m en snelheid v dat:
\(\)
\( E = \frac{\mathrm{m} c^2}{\sqrt{1 - \frac{v^2}{c^2}}} \)
\(\)
Dus:
\(\)
\( \frac{E}{\mathrm{m} c^2 } = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \)
\(\)
\( \frac{E}{\mathrm{m} c^2} = \frac{\mathrm{d} t}{ \mathrm{d}\tau } \)
\(\)
Op basis van het
Principle of Extremal Aging kunnen we afleiden dat de grootheid
\( (1 - \frac{r_s}{r_0}) \, \frac{\mathrm{d} t}{ \mathrm{d}\tau } \) voor een vrijvallend voorwerp met massa m (m << M) een
constante waarde heeft. Ver weg (voor r = ∞) gaat die uitdrukking over in de speciaal relativistische uitdrukking voor het quotiënt van de totale energie van het voorwerp en zijn rustenergie. Er is dus aanleiding om als uitdrukking voor de constante (!) algemeen relativistische (totale) energie van een vrij vallend voorwerp met rustmassa m de onderstaande formule te nemen:
\(\)
\( \frac{E}{\mathrm{m} c^2} = (1 - \frac{r_s}{r_0}) \, \frac{\mathrm{d} t}{ \mathrm{d}\tau } \,\,\,\,\,\,\,\, (6) \)
\(\)
Men kan ook aantonen (maar dat zal ik nu niet doen) dat deze formule voor niet-relativistische situaties resultaten oplevert die de uitkomsten van de newtoniaanse fysica benaderen. Dezelfde formule geldt dan uiteraard ook voor een bundel vrijvallende afval met totale massa m.
(
Wordt vervolgd.)