Tot slot nog even controleren of
\( \sum_{i_1, i_2, j_1, j_2} T^{i_1 i_2 }_{j_1 j_2} \cdot \frac{\partial}{\partial x^{i_1}} \otimes \frac{\partial}{\partial x^{i_2}} \otimes dx^{j_1}\otimes dx^{j_2} \) bij het invullen van de basis(co)vectoren
\( dx^{k_1} , \,\, dx^{k_2} , \,\, \frac{\partial}{\partial x^{l_1}} \, , \,\, \frac{\partial}{\partial x^{l_2}}\) de juiste tensorcomponenten oplevert:
\(\)
\( \left [\sum_{i_1, i_2, j_1, j_2} T^{i_1 i_2 }_{j_1 j_2} \cdot \frac{\partial}{\partial x^{i_1}} \otimes \frac{\partial}{\partial x^{i_2}} \otimes dx^{j_1}\otimes dx^{j_2} \right ]( dx^{k_1} \, , \,\, dx^{k_2} \, , \,\, \frac{\partial}{\partial x^{l_1}} \, , \,\, \frac{\partial}{\partial x^{l_2}} ) \,\, = \\ \sum_{i_1, i_2, j_1, j_2} T^{i_1 i_2 }_{j_1 j_2} \cdot \left [ \frac{\partial}{\partial x^{i_1}} \otimes \frac{\partial}{\partial x^{i_2}} \otimes dx^{j_1}\otimes dx^{j_2} \right ] ( dx^{k_1} \, , \,\, dx^{k_2} \, , \,\, \frac{\partial}{\partial x^{l_1}} \, , \,\, \frac{\partial}{\partial x^{l_2}} ) \)
\(\)
\( \left [\sum_{i_1, i_2, j_1, j_2} T^{i_1 i_2 }_{j_1 j_2} \cdot \frac{\partial}{\partial x^{i_1}} \otimes \frac{\partial}{\partial x^{i_2}} \otimes dx^{j_1}\otimes dx^{j_2} \right ]( dx^{k_1} \, , \,\, dx^{k_2} \, , \,\, \frac{\partial}{\partial x^{l_1}} \, , \,\, \frac{\partial}{\partial x^{l_2}} ) \,\, = \\ \sum_{i_1, i_2, j_1, j_2} T^{i_1 i_2 }_{j_1 j_2} \cdot \frac{\partial}{\partial x^{i_1}}( dx^{k_1} ) \cdot \frac{\partial}{\partial x^{i_2}}( dx^{k_2} ) \cdot dx^{j_1}( \frac{\partial}{\partial x^{l_1}} ) \cdot dx^{j_2} ( \frac{\partial}{\partial x^{l_2}} ) \)
\(\)
\( \left [\sum_{i_1, i_2, j_1, j_2} T^{i_1 i_2 }_{j_1 j_2} \cdot \frac{\partial}{\partial x^{i_1}} \otimes \frac{\partial}{\partial x^{i_2}} \otimes dx^{j_1}\otimes dx^{j_2} \right ]( dx^{k_1} \, , \,\, dx^{k_2} \, , \,\, \frac{\partial}{\partial x^{l_1}} \, , \,\, \frac{\partial}{\partial x^{l_2}} ) \,\, = \\ \sum_{i_1, i_2, j_1, j_2} T^{i_1 i_2 }_{j_1 j_2} \cdot \delta^{k_1}_{i_1} \cdot \delta^{k_2}_{i_2} \cdot \delta^{j_1}_{l_1} \cdot \delta^{j_2}_{l_2}\)
\(\)
\( \left [\sum_{i_1, i_2, j_1, j_2} T^{i_1 i_2 }_{j_1 j_2} \cdot \frac{\partial}{\partial x^{i_1}} \otimes \frac{\partial}{\partial x^{i_2}} \otimes dx^{j_1}\otimes dx^{j_2} \right ]( dx^{k_1} \, , \,\, dx^{k_2} \, , \,\, \frac{\partial}{\partial x^{l_1}} \, , \,\, \frac{\partial}{\partial x^{l_2}} ) \,\, = T^{k_1 k_2 }_{l_1 l_2} \)