Dan nu de aanpak vanuit Einsteins ART:
\(\)
\( c^2 \mathrm{d} \tau^2 = (1 - \frac{r_s}{r}) c^2 \mathrm{d} t^2 \, - \, \frac{\mathrm{d} r^2}{ 1 - \frac{r_s}{r}} - r^2 \mathrm{d} \phi^2 \)
\(\)
\( 1 = (1 - \frac{r_s}{r}) \frac{\mathrm{d} t^2}{ \mathrm{d} \tau^2 } \, - \, \frac{\frac{\mathrm{d} r^2}{ c^2 \mathrm{d} \tau^2 }}{ 1 - \frac{r_s}{r}} - r^2 \frac{\mathrm{d} \phi^2}{ c^2 \mathrm{d} \tau^2 } \)
\(\)
\( 1 - \frac{r_s}{r} = (1 - \frac{r_s}{r})^2 \frac{\mathrm{d} t^2}{ \mathrm{d} \tau^2 } \, - \, \frac{\mathrm{d} r^2}{ c^2 \mathrm{d} \tau^2 } - r^2 (1 - \frac{r_s}{r}) \frac{\mathrm{d} \phi^2}{ c^2 \mathrm{d} \tau^2 } \)
\(\)
\( 1 - \frac{r_s}{r} = \left ( \frac{\mathrm{E}}{\mathrm{m} c^2} \right )^2 \, - \, \frac{\mathrm{d} r^2}{ c^2 \mathrm{d} \tau^2 } - r^2 (1 - \frac{r_s}{r}) \frac{\mathrm{d} \phi^2}{ c^2 \mathrm{d} \tau^2 } \)
\(\)
\( (1 - \frac{r_s}{r}) \, c^4 = \left ( \frac{\mathrm{E}}{\mathrm{m}} \right )^2 \, - \, c^2 \frac{\mathrm{d} r^2}{\mathrm{d} \tau^2 } - c^2 r^2 (1 - \frac{r_s}{r}) \frac{\mathrm{d} \phi^2}{ \mathrm{d} \tau^2 } \)
\(\)
\( (1 - \frac{r_s}{r}) \, c^4 = \left ( \frac{\mathrm{E}}{\mathrm{m}} \right )^2 \, - \, c^2 \frac{\mathrm{d} r^2}{\mathrm{d} \tau^2 } - (1 - \frac{r_s}{r}) \frac{c^2}{\mathrm{m}^2 r^2} \mathrm{m}^2 r^4 \frac{\mathrm{d} \phi^2}{ \mathrm{d} \tau^2 } \)
\(\)
\( (1 - \frac{r_s}{r}) \, c^4 = \left ( \frac{\mathrm{E}}{\mathrm{m}} \right )^2 \, - \, c^2 \frac{\mathrm{d} r^2}{\mathrm{d} \tau^2 } - (1 - \frac{r_s}{r}) \, c^2 \frac{\mathrm{L}^2}{\mathrm{m}^2 r^2} \)
\(\)
\( (1 - \frac{r_s}{r}) \, c^4 + (1 - \frac{r_s}{r}) \, c^2 \frac{\mathrm{L}^2}{\mathrm{m}^2 r^2} = \left ( \frac{\mathrm{E}}{\mathrm{m}} \right )^2 \, - \, c^2 \frac{\mathrm{d} r^2}{\mathrm{d} \tau^2 } \)
\(\)
\( (1 - \frac{r_s}{r}) \, \left ( c^4 + c^2 \frac{\mathrm{L}^2}{\mathrm{m}^2 r^2} \right ) = \left ( \frac{\mathrm{E}}{\mathrm{m}} \right )^2 \, - \, c^2 \frac{\mathrm{d} r^2}{\mathrm{d} \tau^2 } \)
\(\)
\( \left ( \frac{\mathrm{E}}{\mathrm{m}} \right )^2 \, = \, c^2 \frac{\mathrm{d} r^2}{\mathrm{d} \tau^2 } \, + \, c^2 \, (1 - \frac{r_s}{r}) \, \left ( c^2 + \frac{\mathrm{L}^2}{\mathrm{m}^2 r^2} \right ) \)
\(\)
\( \left ( \frac{\mathrm{E}}{\mathrm{m}} \right )^2 \, = \, (c \frac{\mathrm{d} r}{\mathrm{d} \tau } )^2 \, + \, \left [ c \, \sqrt{1 - \frac{r_s}{r}} \, \sqrt{ c^2 + \frac{\mathrm{L}^2}{\mathrm{m}^2 r^2} } \right ]^2 \,\,\,\,\,\,\,\,\,\,\,\, (5) \)
\(\)
Het deel tussen rechte haken noemen we de
effectieve potentiaal (volgens Einstein) V
E(r). Dus:
\(\)
\( \mathrm{V}_E(r) = c \, \sqrt{1 - \frac{r_s}{r}} \, \sqrt{ c^2 + \frac{\mathrm{L}^2}{\mathrm{m}^2 r^2} } \,\,\,\,\,\,\,\,\,\,\,\, (6) \)
\(\)
\( (\mathrm{V}_E(r))^2 = c^2 \, (1 - \frac{r_s}{r}) \, \left ( c^2 + \frac{\mathrm{L}^2}{\mathrm{m}^2 r^2} \right ) \,\,\,\,\,\,\,\,\,\,\,\, (7)
\)
\(\)
En:
\(\)
\( \left ( \frac{\mathrm{E}}{\mathrm{m}} \right )^2 \, = \, (c \frac{\mathrm{d} r}{\mathrm{d} \tau } )^2 \, + \, ( \mathrm{V}_E(r) )^2 \,\,\,\,\,\,\,\,\,\,\,\, (8) \)
\(\)
Voor r ≤ r
s bestaan er sowieso geen stabiele cirkelbanen, dus hoeven we enkel de gevallen voor r > r
s te bekijken. Verder zien we dat alleen die cirkelbanen met straal r stabiel zijn waarvoor (V
E(r))
2 een lokaal minimum heeft.
(
Wordt vervolgd.)