choco-and-cheese
Artikelen: 0

Afleiden van de formule voor harmonische trilling

Een harmonische trilling is een trilling die beschreven wordt door één enkele sinusfunctie:

y(t) = A*sin(2 π*f*t+φ)

Nu staat er dat ik moet controleren dat:

y(t) = (t+T)

Maar hoe begin ik daaraan?
Gebruikersavatar
Typhoner
Artikelen: 0
Berichten: 2.456
Lid geworden op: zo 20 feb 2011, 21:33

Re: Afleiden van de formule voor harmonische trilling

T en f zijn hoe gerelateerd?
This is weird as hell. I approve.
choco-and-cheese
Artikelen: 0

Re: Afleiden van de formule voor harmonische trilling

f = 1/T (dus invers)

Maar ik begrijp niet goed hoe ik de faseverschuiving φ moet omvormen of mag ik die gewoon weglaten?

Ik kom nu deze formule uit:

y(t)=A*sin(2 π*t/T+φ)

Ik snap y(t)=(t+T) niet goed. Wat bedoelen ze daarmee in woorden?
Gebruikersavatar
Revelation
Artikelen: 0
Berichten: 2.364
Lid geworden op: do 24 mar 2005, 20:56

Re: Afleiden van de formule voor harmonische trilling

Misschien staat er een fout in het antwoordmodel? y(t) is een periodieke functie, maar in het antwoord is het opeens geen periodieke functie meer.
“Quotation is a serviceable substitute for wit.” - Oscar Wilde
Gebruikersavatar
Jan van de Velde
Moderator
Artikelen: 0
Berichten: 51.334
Lid geworden op: di 11 okt 2005, 20:46

Re: Afleiden van de formule voor harmonische trilling

choco-and-cheese schreef: za 12 mei 2012, 18:26
y(t) = (t+T)
Hmm?? Dat zou toch betekenen dat de uitwijking met een toenemende tijd steeds groter zou worden? Niet echt harmonisch, en in elk geval niet passend bij y(t) = A*sin(2 π*f*t+φ)
ALS WIJ JE GEHOLPEN HEBBEN...
help ons dan eiwitten vouwen, en help mee ziekten als kanker en zo te bestrijden in de vrije tijd van je chip...
http://sciencetalk.nl/forumshowtopic=59270
choco-and-cheese
Artikelen: 0

Re: Afleiden van de formule voor harmonische trilling

Ik krijg het uitgewerkt tot:

y(t)=A*sin(2 π*t/T+φ)

y(t)=A*sin(360°*t/T+φ) en één periode is T = 360°, dus dat valt weg t.o.v elkaar:

y(t)=A*sin(t+φ)

Eigenlijk staat er in de cursus nog een y bij:

y(t+T)=y(t)

Ik vindt het vreemd omdat op de x-as t in seconde staat weergegeven, wat is dan de eenheid voor de y-as bij een sinusoïdale harmonische trilling?
Gebruikersavatar
Revelation
Artikelen: 0
Berichten: 2.364
Lid geworden op: do 24 mar 2005, 20:56

Re: Afleiden van de formule voor harmonische trilling

\(y(t+T)=y(t)\)
is een heel ander verhaal!

Wat deze uitdrukking zegt is dat de functie periodiek is: de waarden zijn hetzelfde als je een periode, die lengte T heeft, verder bent. In een standaard sinus,
\(sin(x)\)
is dit na
\(2 \pi\)
.

De eenheid op de y-as hangt af van je A. De sinus is eenheidsloos, maar het kan zijn dat je A bijvoorbeeld de eenheid van meter heeft. Dit is bijvoorbeeld het geval bij een uitwijking van een slinger.
“Quotation is a serviceable substitute for wit.” - Oscar Wilde
choco-and-cheese
Artikelen: 0

Re: Afleiden van de formule voor harmonische trilling

Bedankt voor de heldere uitleg, ik heb er weinig aan toe te voegen. Als ik de eenheden check wordt één periode in een welbepaalde tijd doorlopen (in seconde). T en t hebben dus dezelfde eenheid.

Terug naar “Huiswerk en Practica”