Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
Uberpoon
Artikelen: 0
Berichten: 11
Lid geworden op: wo 07 dec 2011, 21:02

Iteraties

Gisteren had mijn leerkracht wiskunde het over iteraties. Hij gaf het voorbeeld f(x)=√x met x 0 = 9 dus x1 = 3 en x2 = √3 ...

Hij vroeg dan welke waarde deze iteratie uiteindelijk zou worden; en ik dacht dat het 1 zou benaderen maar mijn leerkracht zei dat deze op een bepaald moment echt 1 wordt.

Klopt dit en waarom?
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: Iteraties

Het lijkt me dat je nogal wat vergeet, hoe definieer je deze iteratie, dus wat is x_n?
Uberpoon
Artikelen: 0
Berichten: 11
Lid geworden op: wo 07 dec 2011, 21:02

Re: Iteraties

Ik zal de vraag anders stellen; als je van het getal 9 de vierkantswortel neemt, dan bekom je 3.

Als je dan van 3 de wortel neemt, dan bekom je (ongeveer) 1.732

Als je daar dan de wortel van neemt bekom je 1.316

Als je zo doorgaat, zou je volgens mij het getal 1 benaderen maar volgens mijn leerkracht kom je stipt 1 uit
Gebruikersavatar
Safe
Pluimdrager
Artikelen: 0
Berichten: 10.058
Lid geworden op: wo 17 nov 2004, 12:37

Re: Iteraties

Ja, en wat is je iteratieformule?

Als je niet weet wat ik bedoel, geef dat aan ...

Heb je al andere iteraties gezien/berekend?
Gebruikersavatar
Xenion
Artikelen: 0
Berichten: 2.609
Lid geworden op: za 21 jun 2008, 10:41

Re: Iteraties

Stel dat je begint met
\(x_0\)
. Dit kan eender welk getal zijn.
\(x_1 = \sqrt x_0\)
\(x_2 = \sqrt \sqrt x_0\)
\(x_3 = \sqrt \sqrt \sqrt x_0\)
Kan je een manier bedenken om
\(x_n\)
te schrijven als een functie van
\(x_0\)
en
\(n\)
?

Kan je dan verder berekenen waaraan
\(\lim_{n \to \infty} x_n\)
gelijk is?
Gebruikersavatar
Math-E-Mad-X
Artikelen: 0
Berichten: 2.907
Lid geworden op: wo 13 sep 2006, 17:31

Re: Iteraties

Uberpoon schreef: wo 27 nov 2013, 17:42
Hij vroeg dan welke waarde deze iteratie uiteindelijk zou worden; en ik dacht dat het 1 zou benaderen maar mijn leerkracht zei dat deze op een bepaald moment echt 1 wordt.

Klopt dit en waarom?
Dit lijkt me gewoon een kwestie van onzorgvuldig taalgebruik.

De elementen van de rij benaderen 1. Maar de limiet van de rij is exact 1.
while(true){ Thread.sleep(60*1000/180); bang_bassdrum(); }
EvilBro
Artikelen: 0
Berichten: 7.081
Lid geworden op: vr 30 dec 2005, 09:45

Re: Iteraties

Ik denk dat M.E.M.X. gelijk heeft en het hier inderdaad om onzorgvuldig taalgebruik gaat. Mocht dit nu niet het geval zijn:
Hij vroeg dan welke waarde deze iteratie uiteindelijk zou worden; en ik dacht dat het 1 zou benaderen maar mijn leerkracht zei dat deze op een bepaald moment echt 1 wordt.
Presenteer je leerkracht met het volgende: Als
\(x_{n+1} = \sqrt{x_n}\)
dan
\(x_n = x_{n+1}^2\)
. Je hebt nu een manier om voorgaande x-en te bepalen. Stel je begint met een element dat gelijk is aan 1. Na hoeveel stappen wordt x dan groter dan 1?

Maar goed, ik denk dus ook dat het hier gewoon gaat om slecht vertellen/luisteren (zie zelf maar wie je de schuld geeft :) ).

Terug naar “Wiskunde”