Ik heb geprobeerd z gelijk te stellen aan 5-5i maar weet dat dat fout is. Ik weet gewoon niet wat ik moet doen.
Ik heb geprobeerd z gelijk te stellen aan 5-5i maar weet dat dat fout is. Ik weet gewoon niet wat ik moet doen.
de modulus of absolute waarde van 21-20i is 29 (pythagoras)
het argument van 21-20i is -43,602818 degr (tan^-1(IM/RE))
rekenregel worteltrekken complex getal:
wortel(absoute waarde) en nieuwe argument =argument/2
dus sqrt(21-20i) = 5,385164807 onder een hoek van -21,801409 degr (de P-notatie)
De R-notatie is dan 5-2i
Dat is een behoorlijke omweg.
Laten we eerst veronderstellen dat 21-20i=(a-bi)2 een geheel kwadraat is, dan moet 21=a2+(bi)2=a2-b2 èn -20i=-2abi,
Als onze veronderstelling juist is, kunnen we gewoon gaan proberen (want het zijn kleine gehele getallen), a=5 en b=2 blijkt juist te zijn. Zo op 't oog ziet dit er nog niet simpel uit, maar je kan dit zeer eenvoudig uit het hoofd doen ...
Mee eens, maar dan moet je inderdaad gaan uitproberen
De rekenregels voor complexe getallen zijn denk ik tot stand gekomen met behulp van vectoreigenschappen (Euler) in een complex vlak.