Rik Speybrouck schreef: ↑di 12 nov 2019, 13:29
wat is eigenlijk de betekenis van die d*y/x) het was daar dat ik vast zat
Aanvullend op wat Tempelier uitlegde, wordt soms vergeten wat ∫ eigenlijk voorstelt: het is de integraal, ofwel: het geheel, het totaal, de som van iets. Dat 'iets' is een vermenigvuldiging. Een functievoorschrift vermenigvuldigd met een kleine breedte. Die kleine breedte wordt weergegeven met d(nog iets); dat kan zijn d(x) -en dan heb je een oppervlakte-, in andere gevallen d(y), of d(x/y), of ...
In feite is ∫ dus de optelling van een heleboel vermenigvuldigingen: heel veel uitkomsten, steeds iedere uitkomst vermenigvuldigd met een kleine breedte.
De d(x), of dx, stelt een delta x voor; een kleine verandering van x.
Lees anders de Inleiding van Integraalrekenen op Wikipedia nog eens na.