Forumregels
(Middelbare) school-achtige vragen naar het forum "Huiswerk en Practica" a.u.b.
Zie eerst de Huiswerkbijsluiter
MartoO
Artikelen: 0
Berichten: 35
Lid geworden op: vr 17 jan 2020, 14:55

Taylorreeksen

Ik ben op zoek naar de afleiding van de taylorreeks van de sinusfunctie.
Deze vergelijking luidt: sin x = x/1! - x^3/ 3! + x^5/5! -x^7/7! , enz.
Wie kan mij vertellen waar deze beschreven staat of hoe ik deze zelf kan uitrekenen of bepalen.
Gebruikersavatar
Marko
Artikelen: 0
Berichten: 10.611
Lid geworden op: vr 03 nov 2006, 23:08

Re: Taylorreeksen

Dat kun je vrijwel direct afleiden uit de definitie van de Taylor-reeks (zie https://nl.wikipedia.org/wiki/Taylorreeks#Definitie)

Wat jij opschrijft is de reeksontwikkeling van sin x rond het punt x=0.

Dan moet je dus bepalen wat f(0), f'(0), f''(0), enzovoort zijn.

Als f(x) = sin x, is f'(x) = cos x, f''(x) = -sin x, f'''(x) = -cos x en f''''(x) = sin x enzovoort

Dus wordt de reeksontwikkeling sin 0 + cos 0/1! * x - sin 0/2! * x2 - cos 0/3! * x3 enzovoort.
\(sin \space 0 + \frac {cos \space 0}{1!} x - \frac {sin \space 0}{2!} x^2 - \frac {cos \space 0}{3!} x^3 + \frac {sin \space 0}{4!} x^4 + \frac {cos \space 0}{5!} x^5 ....\)
Aangezien sin 0 = 0 vallen alle termen met sin weg. En cos 0 = 1, dus blijft over
\(\frac {1}{1!} x - \frac {1}{3!} x^3 + \frac {1}{5!} x^5 ....\)
En alle hogere orde termen.
MartoO
Artikelen: 0
Berichten: 35
Lid geworden op: vr 17 jan 2020, 14:55

Re: Taylorreeksen

Duidelijk, dank!

Terug naar “Wiskunde”