\( 0 = ( 1 - \frac{2 \mathrm{m}}{r} ) (\mathrm{d}t)^2 - (\mathrm{d}x)^2 - \frac{1}{r^2} \frac{2 \mathrm{m}}{r - 2 \mathrm{m} } (x \mathrm{d}x )^2 \)
\(\)
\( (\mathrm{d}x)^2 + \frac{1}{r^2} \frac{2 \mathrm{m}}{r - 2 \mathrm{m} } (x \mathrm{d}x )^2 = ( 1 - \frac{2 \mathrm{m}}{r} ) (\mathrm{d}t)^2 \)
\(\)
\( (1 + \frac{1}{r^2} \frac{2 \mathrm{m}}{r - 2 \mathrm{m} } x^2 ) (\mathrm{d}x)^2 = ( 1 - \frac{2 \mathrm{m}}{r} ) (\mathrm{d}t)^2 \)
\(\)
\( (1 + \frac{x^2}{r^2} \frac{\frac{2 \mathrm{m}}{r}}{1 - \frac{2 \mathrm{m}}{r}} ) (\mathrm{d}x)^2 = ( 1 - \frac{2 \mathrm{m}}{r} ) (\mathrm{d}t)^2 \)
\(\)
\( \left (1 + \frac{2 \mathrm{m}}{r} \frac{x^2}{r^2} \frac{1}{1 - \frac{2 \mathrm{m}}{r}} \right ) (\mathrm{d}x)^2 = ( 1 - \frac{2 \mathrm{m}}{r} ) (\mathrm{d}t)^2 \)
\(\)
\( \left ( \frac{\mathrm{d} x}{\mathrm{d} t} \right )^2 = \frac{ 1 - \frac{2 \mathrm{m}}{r} }{ 1 + \frac{2 \mathrm{m}}{r} \frac{x^2}{r^2} \left ( \frac{1}{1 - \frac{2 \mathrm{m}}{r}} \right ) } \)
\(\)
\( \frac{\mathrm{d} x}{\mathrm{d} t} = \sqrt{\frac{ 1 - \frac{2 \mathrm{m}}{r} }{ 1 + \frac{2 \mathrm{m}}{r} \frac{x^2}{r^2} \left ( \frac{1}{1 - \frac{2 \mathrm{m}}{r}} \right ) } } \)
(Waarbij we er vanuit gaan dat het licht in de richting van de positieve x-as beweegt.)