Gebruikersavatar
aadkr
Pluimdrager
Artikelen: 0
Berichten: 6.687
Lid geworden op: vr 13 jan 2006, 20:41

vierkantsvergelijking die eindigd op nul

stel:ik heb de volgende vierkantsvergelijking
\(4\cdot x^2+37 \cdot x +40=0\)
\(\left( a \cdot x +p \right) \cdot \left(b \dot x +q\right)=0\)
ik weet dat
\( p \cdot q =40\)
hoe kom ik aan de oplossing
\(\left( x+8 \right) \cdot \left( 4 \cdot x +5 \right) \)
Gebruikersavatar
ukster
Artikelen: 0
Berichten: 5.009
Lid geworden op: za 28 nov 2015, 10:42

Re: vierkantsvergelijking die eindigd op nul

Probeer te ontbinden in factoren. Trial and error is een fundamentele methode om problemen op te lossen. Het wordt gekenmerkt door herhaalde, gevarieerde pogingen die worden voortgezet tot succes, of totdat de beoefenaar stopt met proberen.
RedCat
Artikelen: 0
Berichten: 514
Lid geworden op: zo 21 jul 2019, 16:38

Re: vierkantsvergelijking die eindigd op nul

Alternatief:

Via de abc-formule:
\(x_{_{1,2}}=\frac{-37\pm \sqrt{37^2-4\cdot 4 \cdot 40}}{2\cdot 4}\)

dit levert:
\(x_1=\frac{-37-27}{8}=-8\)
\(x_2=\frac{-37+27}{8}=\frac{-5}{4}\)

We weten:
\((x-x_1)(x-x_2)=0\)
dus
\((x+8)(x+\frac{5}{4})=0\)
en als dit product gelijk is aan nul, dan is dit product vermenigvuldigd met 4 (= de noemer van de breuk in de tweede factor) ook nul:
\((x+8)(x+\frac{5}{4})\cdot 4=0\)
ofwel (breng die 4 binnen de haakjes van de tweede factor):
\((x+8)(4x+5)=0\)
Gebruikersavatar
OOOVincentOOO
Artikelen: 0
Berichten: 1.665
Lid geworden op: ma 29 dec 2014, 14:34

Re: vierkantsvergelijking die eindigd op nul

Of een staartdeling, ik krijg het format niet goed in Latex dus maar zo:

x+8 / 4x^2+37x+40 \ 4x+5
..........4x^2+32x
..........------------
..................5x
..................5x+40
..................-------
.......................0
Gebruikersavatar
tempelier
Artikelen: 0
Berichten: 4.388
Lid geworden op: zo 08 jan 2012, 00:59

Re: vierkantsvergelijking die eindigd op nul

Natuurlijk kan de oplossing via grof geweld (de abc-formule) worden gevonden.

Maar vroeger was oplossen door ontbinden de standaard en grof geweld werd alleen gebruikt als ontbinden niet lukte.
Ik wil best de standaard methode voor ontbinden geven als er belangstelling voor is.
Gebruikersavatar
tempelier
Artikelen: 0
Berichten: 4.388
Lid geworden op: zo 08 jan 2012, 00:59

Re: vierkantsvergelijking die eindigd op nul

ukster schreef: wo 02 dec 2020, 11:43 Probeer te ontbinden in factoren. Trial and error is een fundamentele methode om problemen op te lossen. Het wordt gekenmerkt door herhaalde, gevarieerde pogingen die worden voortgezet tot succes, of totdat de beoefenaar stopt met proberen.
Als er rationele oplossingen zijn dan is het aantal probeersels eindig.
Gebruikersavatar
aadkr
Pluimdrager
Artikelen: 0
Berichten: 6.687
Lid geworden op: vr 13 jan 2006, 20:41

Re: vierkantsvergelijking die eindigd op nul

Hartelijk dank tempelier en 000 vincent000
Het is me nu duidelijk.
Nogmaals hartelijk dank.
Aad
Gebruikersavatar
OOOVincentOOO
Artikelen: 0
Berichten: 1.665
Lid geworden op: ma 29 dec 2014, 14:34

Re: vierkantsvergelijking die eindigd op nul

Eigenlijk was ik iets te snel met reageren. Ik dacht dat een factor bekend was, maar dat was niet het geval. Indien een factor bekend is kun je een staartdeling doen. Daar stond mij nog iets van bij van 20 jaar geleden maar de methode weet ik niet meer precies.

Tempelier heeft echter het echter over de methode. Ik zou het leuk vinden deze te zien.

Heb wel op internet her en der iets gezien maar niet in mijn uitleg voorkeur.
Gebruikersavatar
tempelier
Artikelen: 0
Berichten: 4.388
Lid geworden op: zo 08 jan 2012, 00:59

Re: vierkantsvergelijking die eindigd op nul

Dat kan hoor.
Laat:
V: ax2+bx+c=0 met a,b,c geheel.

Als V rationele oplossingen heeft dan is de vorm ontbindbaar door te zoeken naar de gehele getallen p en q zodat:
1. pq=ac
2. p+q=b

Door nu V te schrijven als:
V: ax2+px+qx+c=0.
Is het linker lid eenvoudig ontbindbaar.

Voor de gegeven VKV

4x2+37x+40=0

geeft dit dat het product 4*40=60 en de som 37
geeft vrij snel: p=5 en q=32

Dit geeft weer:

V: 4x2+5x+32x+40=0
V: x(4x+5)+ 8(4x+5)=0
V: (x+8)(4x+5)=0
enz.

Opm:
1. Breuken proberen is zinloos.
2. Ga uit van het product, daar zijn maar eindig veel mogelijkheden.
3. Vroeger werd dit eerst geleerd en dan pas na veel oefening kwam de abc-formule.

PS.
Ik heb nog een trucje in de aanbieding, dat vroeger verboden was.
Gebruikersavatar
OOOVincentOOO
Artikelen: 0
Berichten: 1.665
Lid geworden op: ma 29 dec 2014, 14:34

Re: vierkantsvergelijking die eindigd op nul

Dankjewel voor de opfrissing!

Dat andere trucje wil ik wel eens zien!
Gebruikersavatar
tempelier
Artikelen: 0
Berichten: 4.388
Lid geworden op: zo 08 jan 2012, 00:59

Re: vierkantsvergelijking die eindigd op nul

Dat is gemakkelijk.

stel:
\(x=\frac{y}{a}\)
Je krijgt dan een nieuwe vergelijking y2+px+q=0

In dit geval:

y2+37y+160=0
Gebruikersavatar
aadkr
Pluimdrager
Artikelen: 0
Berichten: 6.687
Lid geworden op: vr 13 jan 2006, 20:41

Re: vierkantsvergelijking die eindigd op nul

hartelijk dank tempelier.
aad
Gebruikersavatar
OOOVincentOOO
Artikelen: 0
Berichten: 1.665
Lid geworden op: ma 29 dec 2014, 14:34

Re: vierkantsvergelijking die eindigd op nul

Inderdaad, Dankjewel!
Gebruikersavatar
tempelier
Artikelen: 0
Berichten: 4.388
Lid geworden op: zo 08 jan 2012, 00:59

Re: vierkantsvergelijking die eindigd op nul

Graag gedaan hoor.

Terug naar “Analyse en Calculus”