Het is niet duidelijk langs welke lijn je precies wil vouwen. Vanaf dat hoekpunt en een van de overstaande hoeken van het papier? In dat geval is de verhouding toch gewoon 2:3, dus de lengte van de vouw √13 c.q. 1/4*√13 keer de lengte van de lange zijde?
Vouw het papier weer open, trek de lijn vanaf de hoek naar het midden van de lange zijde. Deze staat haaks op de vouwlijn. Splits hiermee het omgevouwen stuk in 2 rechthoekige driehoeken en invullen maar.
Ik ben wat wezen knippen en vouwen en door nauwkeurig opmeten kom ik op een vouwlijnlengte van circa 97% van de lange zijde.
(1/4)√13 ≈0,9 , dus dat antwoord kan niet goed zijn!
Interessant is natuurlijk de door een berekening verkregen exacte waarde.
Iets andere methode (ga uit van het plaatje ven CoenCo, liggend, met onderste lange zijde als x-as en het punt rechtsonder als oorsprong).
Lange zijde 4, korte zijde 3.
Lijn van rechterbovenhoek naar midden onderste zijde heeft helling 3/2.
Het midden ligt op punt \((-1,\frac{3}{2})\).
Lijn door dat punt loodrecht op die lijn is \(y=-\frac{2}{3}x+\frac{5}{6}\)
Lengte is afstand tussen punt van deze lijn met x = 0 \((0,\frac{5}{6})\) en het punt met y = 3 \((-3\frac{1}{4},3)\).
Ook mooi, de euclidische (cartesische) coördinaten oplossing
ik was al bezig met een geometrische oplossing met congruente driehoeken, totaal oppervlak =som van deeloppervlakken etc.
beetje overdone dus