Zojuist kwam ik dit tegen: http://www.mathart.nl/fog.html
Ik heb het nog niet gelezen, maar het ziet er uit als een interessant discussiestuk voor Theorieontwikkeling.
Moderators: Michel Uphoff, Jan van de Velde
Hallo PP,Professor Puntje schreef: ↑zo 06 feb 2022, 13:00 Wat ik van de man begrijp betreft een tak van wiskunde die niet langer in de belangstelling staat, maar het ziet er op het eerste gezicht inderdaad wel als een serieus werkje uit.
Voor dit topic lijkt mij dan vooral interessant in hoeverre het boek inderdaad komt tot "an intuitive way of developing the impressive cathedral of geometry from simple axioms that are immediately accepted as true in a real geometrical space.".This book is written for mathematicians, philosophers and theoretical
physicists who want a sound fundament for geometry. It hardly contains
any new facts. But it does give several new proofs and, above all, an
intuitive way of developing the impressive cathedral of geometry from
simple axioms that are immediately accepted as true in a real geometrical
space. Now, if you glance through this book you might think that it
is more about abstract algebra than about geometry. This is because
geometry is in its essence algebra. But throughout we have tried to keep
in touch with geometrical content. However, in order to make sure that
there are no gaps in the proofs one has to ascend to the algebraic level
of relations between geometrical objects.
There is another reason why this work may be of interest, apart from
presenting yet another axiom system. In a time when geometry is re-
duced to calculus, if not completely absent, it is of utmost importance to
keep the field alive. Even more so since in physics and computer science
the interest in Clifford/Grassmann algebra is growing and old concepts
like (linear) complexes are reappearing on the scene. So I also hope that
this book modestly contributes to a better understanding and increased
appreciation of true geometry.