aadkr schreef: ↑ma 17 jul 2023, 22:57img376.jpg
Euler heeft feitelijk 3 bewijzen gevonden. Het eerste, toen hij 28 jaar was, is uit 1735 gaat als volgt:
1) Beschouw de formule die sin(πx) uitdrukt al oneindig product van eerstegraadsfactoren
2) Beschouw de Taylorreeks voor sin(πx)
3) Werk het oneindige product uit en neem de termen met dezelfde macht van x samen
4) vergelijk nu de term in x³ uit die laatste uitwerking met de term in x³ van de Taylorreeks: die moeten gelijk zijn. QED!
Naar moderne maatstaven is dit bewijs wel wat 'slordig' (bv mag je wel een oneindig product zo uitwerken?), maar Euler was een held in dit soort berekeningen juist uit te voeren. Nu zijn er stellingen die deze stappen rechtvaardigen, hij deed het intuïtief juist.
Aad, waar zit je juist vast in je gevecht met ln(x+1)?