\( \left ( \frac{\mathrm{d} s}{c \mathrm{d} t} \right )^2 = 1 - ( \frac{v_x}{c} )^2 \)
\(\)
\( \left ( \frac{\mathrm{d} s}{c \mathrm{d} t} \right )^2 = \frac{1}{ \,\, \frac{1}{ 1 - ( \frac{v_x}{c} )^2 } \,\, } \)
\(\)
\( \left ( \frac{\mathrm{d} s}{c \mathrm{d} t} \right )^2 = \frac{1}{ \,\, \left ( \sqrt{ \frac{1}{ 1 - ( \frac{v_x}{c} )^2 } } \right )^2 \,\, } \)
\(\)
\( \left ( \frac{\mathrm{d} s}{c \mathrm{d} t} \right )^2 = \frac{1}{ \,\, \left ( \frac{\sqrt{1}}{ \sqrt{ 1 - ( \frac{v_x}{c} )^2 } } \right )^2 \,\, } \)
\(\)
\( \left ( \frac{\mathrm{d} s}{c \mathrm{d} t} \right )^2 = \frac{1}{ \,\, \left ( \frac{1}{ \sqrt{ 1 - ( \frac{v_x}{c} )^2 } } \right )^2 \,\, } \)
\(\)
\( \left ( \frac{\mathrm{d} s}{c \mathrm{d} t} \right )^2 = \frac{1}{ \gamma^2 } \)
\(\)
\( \left ( \frac{\mathrm{d} s}{\mathrm{d} t} \right )^2 = \frac{c^2}{\gamma^2} \)