Merlion
Artikelen: 0
Berichten: 77
Lid geworden op: di 05 mar 2013, 07:01

Keuze termen bij breuksplitsing

De breuksplitsing van het quotient hieronder heeft 3 termen waarvan 1 van de derde graad. Als ik zelf de noemer opdeel dan heb ik ( x-2) en (x-2)^2. Hoe komt die derde graad in beeld? Begrijp de denkwijze niet.
IMG_1095
RedCat
Artikelen: 0
Berichten: 495
Lid geworden op: zo 21 jul 2019, 16:38

Re: Keuze termen bij breuksplitsing

Bij breuksplitsing splits je de breuk in termen. Bij n-voudige wortels in de noemers ontstaan bij splitsing n termen.

Voorbeeld:
\(\frac{1}{(x-2)^2} = \frac{A}{(x-2)}+\frac{B}{(x-2)^2}\)
\(\frac{1}{(x-2)^3} = \frac{A}{(x-2)}+\frac{B}{(x-2)^2}+\frac{C}{(x-2)^3}\)
\(\frac{1}{(x-2)^4} = \frac{A}{(x-2)}+\frac{B}{(x-2)^2}+\frac{C}{(x-2)^3}+\frac{D}{(x-2)^4}\)

Je splitst dus NIET \(\frac{1}{(x-2)^3} = \frac{1}{(x-2)(x-2)^2} \) in factoren \(\frac{1}{(x-2)}\) en \(\frac{1}{(x-2)^2}\)

Bedoel je dit?
Merlion
Artikelen: 0
Berichten: 77
Lid geworden op: di 05 mar 2013, 07:01

Re: Keuze termen bij breuksplitsing

Ja en nee.

Hoe krijg ik die derde-graadsterm uit die noemer gedistilleerd?
Merlion
Artikelen: 0
Berichten: 77
Lid geworden op: di 05 mar 2013, 07:01

Re: Keuze termen bij breuksplitsing

Begrijp het. De veelterm in de noemer moet eerst in de vorm van (x-a)^n omgevormd worden. 😃
RedCat
Artikelen: 0
Berichten: 495
Lid geworden op: zo 21 jul 2019, 16:38

Re: Keuze termen bij breuksplitsing

Klopt, en meer in het algemeen: je moet de noemer steeds eerst in factoren ontbinden.
Merlion
Artikelen: 0
Berichten: 77
Lid geworden op: di 05 mar 2013, 07:01

Re: Keuze termen bij breuksplitsing

Dank je wel.

Terug naar “Analyse en Calculus”