In principe is de eigenfrequentie van het massa-veer systeem afhankelijk van de demping. Zie bijvoorbeeld paragraaf 1.2.2 hier. Daar staat de formule van de eigenfrequentie met demping:
$$
\omega_1 = \sqrt{\omega_0^2 - \gamma^2}
$$
Hierbij is \(\omega_0\) de eigenfrequentie van het ongedempte systeem en \(\gamma\) de 'dempingsfactor', wat de exponent is van de e-macht waarmee je de gedempte trilling kan beschrijven:
$$
x(t) = e^{-\gamma t}A \cos(\omega_1 t - \beta)
$$
waarbij \(x(t)\) de uitwijking is (als functie van de tijd), A de amplitude van de trilling bij t=0, \(\omega_1\) dus de gedempte eigenfrequentie en \(\beta\) nog een fase hoek (niet relevant hier).
Dus hoge demping kan wel aardig wat invloed hebben op de eigenfrequentie. Je zou een tijdreeks moeten meten van de uitwijking (hoek) en daar een \(e^{-\gamma t}\) op moeten fitten zodat je een idee hebt van \(\gamma\) en dus de invloed op de eigenfrequentie.